Citations

Metrics

Peer-reviewed journal publications: 4
Preprints: 2
Peer-reviewed conference proceedings: 5

Citations: 93
Citations excluding self-citations: 66

h-index: 5
h-index excluding self-citations: 4

Peer-reviewed journal publications

  1. Streher, L. B., Silvis, M. H., Cifani, P., Verstappen, R. W. C. P. (2021). “Mixed modeling for large-eddy simulation: The single-layer and two-layer minimum-dissipation-Bardina models”. AIP Advances 11, 015002. DOI: 10.1063/5.0015293. PDF Abstract BibTeX BibLaTeX

  2. Trias, F. X., Gorobets, A., Silvis, M. H., Verstappen, R. W. C. P., Oliva, A. (2017). “A new subgrid characteristic length for turbulence simulations on anisotropic grids”. Physics of Fluids 29, 115109. DOI: 10.1063/1.5012546. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Andrade, J. R., Martins, R. S., Thompson, R. L., De Silveira Neto, A., Mompean, G. (n.d.). “A non-linear subgrid-scale closure model employing the non-persistence-of-straining tensor” (submitted).

    2. Shui, Q., Duan, C., Wu, X., Zhang, Y., Luo, X., Hong, C., He, Y., Wong, N. H., Gu, Z. (2020). “A hybrid dynamic Smagorinsky model for large eddy simulation”. International Journal of Heat and Fluid Flow 86, 108698. DOI: 10.1016/j.ijheatfluidflow.2020.108698.

    3. Schumann, J.-E., Toosi, S., Larsson, J. (2020). “Assessment of Grid Anisotropy Effects on Large-Eddy-Simulation Models with Different Length Scales”. AIAA Journal 58, 4522–4533. DOI: 10.2514/1.J059576.

    4. Pont-Vílchez, A., Trias, F. X., Duben, A., Revell, A., Oliva, A. (2020). “Improving DES Capabilities for Predicting Kelvin–Helmholtz Instabilities. Comparison with a Backward-Facing Step DNS”. In: Direct and Large Eddy Simulation XII. Ed. by García-Villalba, M., Kuerten, H., Salvetti, M. V. Springer International Publishing, pp. 457–462. DOI: 10.1007/978-3-030-42822-8_60.

    5. Trias, F. X., Dabbagh, F., Gorobets, A., Oliet, C. (2020). “On a Proper Tensor-Diffusivity Model for Large-Eddy Simulation of Buoyancy-Driven Turbulence”. Flow, Turbulence and Combustion 105, 393–414. DOI: 10.1007/s10494-020-00123-3.

    6. Toosi, S., Larsson, J. (2020). “Towards systematic grid selection in LES: Identifying the optimal spatial resolution by minimizing the solution sensitivity”. Computers & Fluids 201, 104488. DOI: 10.1016/j.compfluid.2020.104488.

    7. Pont-Vílchez, A., Trias, F. X., Revell, A., Oliva, A. (2020). “Assessment and Comparison of a Recent Kinematic Sensitive Subgrid Length Scale in Hybrid RANS-LES”. In: Progress in Hybrid RANS-LES Modelling. Ed. by Hoarau, Y., Peng, S.-H., Schwamborn, D., Revell, A., Mockett, C. Springer International Publishing, pp. 97–107. DOI: 10.1007/978-3-030-27607-2_7.

    8. Pont-Vílchez, A., Santos, D., Trias, F. X., Duben, A., Revell, A., Oliva, A. (2019). “Assessment of LES techniques for mitigating the Grey Area in DDES models”. In: Proceedings of the 8th European Conference for Aeronautics and Space Sciences. pp. 1–8. DOI: 10.13009/EUCASS2019-777.

    9. Dupuy, D., Toutant, A., Bataille, F. (2019). “A priori tests of subgrid-scale models in an anisothermal turbulent channel flow at low Mach number”. International Journal of Thermal Sciences 145, 105999. DOI: 10.1016/j.ijthermalsci.2019.105999.

    10. Cimarelli, A., Abbà, A., Germano, M. (2019). “General formalism for a reduced description and modelling of momentum and energy transfer in turbulence”. Journal of Fluid Mechanics 866, 865–896. DOI: 10.1017/jfm.2019.124.

    11. Lozano-Durán, A., Bae, H. J. (2019). “Error scaling of large-eddy simulation in the outer region of wall-bounded turbulence”. Journal of Computational Physics DOI: 10.1016/j.jcp.2019.04.063.

    12. Dupuy, D., Toutant, A., Bataille, F. (2019). “A posteriori tests of subgrid-scale models in an isothermal turbulent channel flow”. Physics of Fluids 31, 045105. DOI: 10.1063/1.5091829.

    13. Trias, F. X., Gorobets, A., Oliva, A. (2019). “A New Subgrid Characteristic Length for LES”. In: Direct and Large-Eddy Simulation XI. Ed. by Salvetti, M. V., Armenio, V., Fröhlich, J., Geurts, B. J., Kuerten, H. Springer International Publishing, pp. 135–141. DOI: 10.1007/978-3-030-04915-7_19.

    14. Bae, H. J. (2018). “Investigation of dynamic subgrid-scale and wall models for turbulent boundary layers”. PhD thesis. Stanford University, Stanford, California. URL: https://purl.stanford.edu/yk422nc2017.

    15. Báez Vidal, A. (2018). “Filtering in the Numerical Simulation of Turbulent Compressible Flow with Symmetry Preserving Discretizations”. PhD thesis. Polytechnic University of Catalonia, Spain. URL: http://hdl.handle.net/2117/127504.

    16. Wang, Z., Luo, K., Li, D., Tan, J., Fan, J. (2018). “Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation”. Physics of Fluids 30, 125101. DOI: 10.1063/1.5054835.

    17. Trias, F. X., Folch, D., Gorobets, A., Oliva, A. (2018). “Spectrally-Consistent Regularization of Navier–Stokes Equations”. Journal of Scientific Computing 79, 992–1014. DOI: 10.1007/s10915-018-0880-x.

    18. Zhou, Z., Wang, S., Jin, G. (2018). “A structural subgrid-scale model for relative dispersion in large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution method”. Physics of Fluids 30, 105110. DOI: 10.1063/1.5049731.

    19. Vreugdenhil, C. A., Taylor, J. R. (2018). “Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model”. Physics of Fluids 30, 085104. DOI: 10.1063/1.5037039.

    20. Trias, F. X., Dabbagh, F., Gorobets, A., Oliva, A. (2018). “On a physically-consistent nonlinear subgrid-scale heat flux model for LES of buoyancy driven flows”. In: Proceedings of the 10th International Conference on Computational Fluid Dynamics. pp. 1–13. URL: https://www.iccfd.org/iccfd10/papers/ICCFD10-313-Paper.pdf.

    21. Trias, F. X., Dabbagh, F., Gorobets, A., Oliva, A. (2018). “Building a proper tensor-diffusivity model for large-eddy simulation of buoyancy-driven flows”. In: Proceedings of the 7th European Congress on Computational Fluid Dynamics. Ed. by Owen, R., De Borst, R., Reese, J., Pearce, C. International Center for Numerical Methods in Engineering, Barcelona, Spain, pp. 313–322. URL: http://www.fxtrias.com/docs/ECCOMAS_CFD18_Nonlinear_SGS_heat_flux_paper.pdf.

    22. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    23. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn].

    24. Silvis, M. H., Verstappen, R. (2019). “Nonlinear Subgrid-Scale Models for Large-Eddy Simulation of Rotating Turbulent Flows”. In: Direct and Large-Eddy Simulation XI. Ed. by Salvetti, M. V., Armenio, V., Fröhlich, J., Geurts, B. J., Kuerten, H. Springer International Publishing, pp. 129–134. DOI: 10.1007/978-3-030-04915-7_18.

  3. Silvis, M. H., Remmerswaal, R. A., Verstappen, R. (2017). “Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows”. Physics of Fluids 29, 015105. DOI: 10.1063/1.4974093. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Andrade, J. R., Martins, R. S., Thompson, R. L., De Silveira Neto, A., Mompean, G. (n.d.). “A non-linear subgrid-scale closure model employing the non-persistence-of-straining tensor” (submitted).

    2. Moser, R. D., Haering, S. W., Yalla, G. R. (2021). “Statistical Properties of Subgrid-Scale Turbulence Models”. Annual Review of Fluid Mechanics 53 (published online). DOI: 10.1146/annurev-fluid-060420-023735.

    3. Toosi, S., Larsson, J. (2020). “An alternative derivation of the Germano identity as the residual of the LES equation”. arXiv: 2009.04705 [physics.flu-dyn].

    4. Wang, J.-X., Cao, X., Chen, Y.-P. (2020). “An air distribution optimization of hospital wards for minimizing cross-infection”. Journal of Cleaner Production 179, 123431. DOI: 10.1016/j.jclepro.2020.123431.

    5. Rosofsky, S. G., Huerta, E. A. (2020). “Artificial neural network subgrid models of 2D compressible magnetohydrodynamic turbulence”. Physical Review D 101, 084024. DOI: 10.1103/PhysRevD.101.084024.

    6. Trias, F. X., Dabbagh, F., Gorobets, A., Oliet, C. (2020). “On a Proper Tensor-Diffusivity Model for Large-Eddy Simulation of Buoyancy-Driven Turbulence”. Flow, Turbulence and Combustion 105, 393–414. DOI: 10.1007/s10494-020-00123-3.

    7. Johnson, P. L. (2020). “Energy Transfer from Large to Small Scales in Turbulence by Multiscale Nonlinear Strain and Vorticity Interactions”. Physical Review Letters 124, 104501. DOI: 10.1103/PhysRevLett.124.104501.

    8. Shinde, V. (2020). “Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation”. Physical Review Fluids 5, 014605. DOI: 10.1103/PhysRevFluids.5.014605.

    9. Montecchia, M., Brethouwer, G., Wallin, S., Johansson, A. V., Knacke, T. (2019). “Improving LES with OpenFOAM by minimising numerical dissipation and use of explicit algebraic SGS stress model”. Journal of Turbulence 20, 697–722. DOI: 10.1080/14685248.2019.1706740.

    10. Hendra, G. R., Bushe, W. K. (2019). “Conditional dynamic subfilter modeling”. Physics of Fluids 31, 085107. DOI: 10.1063/1.5098813.

    11. Dupuy, D., Toutant, A., Bataille, F. (2019). “A priori tests of subgrid-scale models in an anisothermal turbulent channel flow at low Mach number”. International Journal of Thermal Sciences 145, 105999. DOI: 10.1016/j.ijthermalsci.2019.105999.

    12. Dupuy, D., Toutant, A., Bataille, F. (2019). “A posteriori tests of subgrid-scale models in strongly anisothermal turbulent flows”. Physics of Fluids 31, 065113. DOI: 10.1063/1.5098389.

    13. Dupuy, D., Toutant, A., Bataille, F. (2019). “A posteriori tests of subgrid-scale models in an isothermal turbulent channel flow”. Physics of Fluids 31, 045105. DOI: 10.1063/1.5091829.

    14. Gao, Y., Liu, C. (2019). “Rortex based velocity gradient tensor decomposition”. Physics of Fluids 31, 011704. DOI: 10.1063/1.5084739.

    15. Fang, L., Wang, C. (2018). “Practices and Advances on Rational Subgrid-Scale Modeling”. Chinese Journal of Computational Physics 35, 253–261. DOI: 10.19596/j.cnki.1001-246x.7800.

    16. Rozema, W., Verstappen, R. W. C. P., Veldman, A. E. P., Kok, J. C. (2020). “Low-Dissipation Simulation Methods and Models for Turbulent Subsonic Flow”. Archives of Computational Methods in Engineering 27, 299–330. DOI: 10.1007/s11831-018-09307-7.

    17. Özbenli, E. (2018). “Consideration of Lie Symmetry Groups in Computational Fluid Dynamics”. PhD thesis. University of Oklahoma. URL: https://hdl.handle.net/11244/316323.

    18. Jacob, J., Malaspinas, O., Sagaut, P. (2018). “A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for Lattice Boltzmann method-based large eddy simulation”. Journal of Turbulence 19, 1051–1076. DOI: 10.1080/14685248.2018.1540879.

    19. Zhou, Z., Wang, S., Jin, G. (2018). “A structural subgrid-scale model for relative dispersion in large-eddy simulation of isotropic turbulent flows by coupling kinematic simulation with approximate deconvolution method”. Physics of Fluids 30, 105110. DOI: 10.1063/1.5049731.

    20. Vreugdenhil, C. A., Taylor, J. R. (2018). “Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model”. Physics of Fluids 30, 085104. DOI: 10.1063/1.5037039.

    21. Mohammad, A. F., Zaki, S. A., Ikegaya, N., Hagishima, A., Ali, M. S. M. (2018). “A new semi-empirical model for estimating the drag coefficient of the vertical random staggered arrays using LES”. Journal of Wind Engineering and Industrial Aerodynamics 180, 191–200. DOI: 10.1016/j.jweia.2018.08.003.

    22. Trias, F. X., Dabbagh, F., Gorobets, A., Oliva, A. (2018). “On a physically-consistent nonlinear subgrid-scale heat flux model for LES of buoyancy driven flows”. In: Proceedings of the 10th International Conference on Computational Fluid Dynamics. pp. 1–13. URL: https://www.iccfd.org/iccfd10/papers/ICCFD10-313-Paper.pdf.

    23. Edoh, A. (2017). “The Effects of Numerical Scheme Resolvability for Large-Eddy Simulations”. PhD thesis. University of California, Los Angeles. URL: https://escholarship.org/uc/item/4n66094c.

    24. Howland, M. F., Yang, X. I. A. (2017). “Dependence of small-scale energetics on large scales in wall-bounded flows”. In: Annual Research Briefs. Center for Turbulence Research, Stanford University, pp. 215–228. URL: https://stanford.box.com/s/eyt36x5m77oun867bh556dfemo8jwngc.

    25. Edoh, A., Karagozian, A. R. (2017). “Inspecting Interactions of Discretization, Filter Formulation, and Stabilization in LES: Lessons from the Taylor-Green Vortex”. In: 23rd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.2017-3952.

    26. Falkenstein, T., Kang, S., Davidovic, M., Bode, M., Pitsch, H., Kamatsuchi, T., Nagao, J., Arima, T. (2017). “LES of Internal Combustion Engine Flows Using Cartesian Overset Grids”. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 72, 36. DOI: 10.2516/ogst/2017026.

    27. Streher, L. B., Silvis, M. H., Cifani, P., Verstappen, R. W. C. P. (2021). “Mixed modeling for large-eddy simulation: The single-layer and two-layer minimum-dissipation-Bardina models”. AIP Advances 11, 015002. DOI: 10.1063/5.0015293.

    28. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    29. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn].

    30. Silvis, M. H., Verstappen, R. (2019). “Nonlinear Subgrid-Scale Models for Large-Eddy Simulation of Rotating Turbulent Flows”. In: Direct and Large-Eddy Simulation XI. Ed. by Salvetti, M. V., Armenio, V., Fröhlich, J., Geurts, B. J., Kuerten, H. Springer International Publishing, pp. 129–134. DOI: 10.1007/978-3-030-04915-7_18.

    31. Trias, F. X., Gorobets, A., Silvis, M. H., Verstappen, R. W. C. P., Oliva, A. (2017). “A new subgrid characteristic length for turbulence simulations on anisotropic grids”. Physics of Fluids 29, 115109. DOI: 10.1063/1.5012546.

    32. Silvis, M. H., Remmerswaal, R. A., Verstappen, R. (2017). “A Framework for the Assessment and Creation of Subgrid-Scale Models for Large-Eddy Simulation”. In: Progress in Turbulence VII: Proceedings of the iTi Conference in Turbulence 2016. Ed. by Örlü, R., Talamelli, A., Oberlack, M., Peinke, J. Springer International Publishing, pp. 133–139. DOI: 10.1007/978-3-319-57934-4_19.

  4. Bloemsma, E. A., Silvis, M. H., Stradomska, A., Knoester, J. (2016). “Vibronic effects and destruction of exciton coherence in optical spectra of J-aggregates: A variational polaron transformation approach”. Chemical Physics 481, 250–261. DOI: 10.1016/j.chemphys.2016.06.018. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Scholes, G. D. (2020). “Polaritons and excitons: Hamiltonian design for enhanced coherence”. Proceedings of the Royal Society A 476, 20200278. DOI: 10.1098/rspa.2020.0278.

    2. Wang, Y.-C., Zhao, Y. (2020). “Variational polaron transformation approach toward the calculation of thermopower in organic crystals”. Physical Review B 101, 075205. DOI: 10.1103/PhysRevB.101.075205.

    3. Bondarenko, A. S. (2019). “Modeling of excitonic properties in tubular molecular aggregates”. PhD thesis. University of Groningen, The Netherlands. DOI: 10.33612/diss.98528598.

    4. Hestand, N. J., Spano, F. C. (2018). “Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer”. Chemical Reviews 118, 7069–7163. DOI: 10.1021/acs.chemrev.7b00581.

    5. Wu, N., Feist, J., Garcia-Vidal, F. J. (2016). “When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields”. Physical Review B 94, 195409. DOI: 10.1103/PhysRevB.94.195409.

Preprints

  1. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn]. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

  2. Silvis, M. H., Verstappen, R. (2015). “Physically-consistent subgrid-scale models for large-eddy simulation of incompressible turbulent flows”. arXiv: 1510.07881 [physics.flu-dyn]. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Ward, D. (2016). “Assessing turbulence models for large-eddy simulation using exact solutions to the Navier–Stokes equations”. Bachelor's thesis. University of Groningen, The Netherlands.

    2. Remmerswaal, R. A. (2016). “A Family of Orthogonalised Nonlinear LES Models Based on the Velocity Gradient: Discretisation and Analysis”. Master's thesis. University of Groningen, The Netherlands.

    3. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    4. Silvis, M. H., Remmerswaal, R. A., Verstappen, R. (2017). “Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows”. Physics of Fluids 29, 015105. DOI: 10.1063/1.4974093.

Peer-reviewed conference proceedings

  1. Silvis, M. H., Verstappen, R. (2019). “Nonlinear Subgrid-Scale Models for Large-Eddy Simulation of Rotating Turbulent Flows”. In: Direct and Large-Eddy Simulation XI. Ed. by Salvetti, M. V., Armenio, V., Fröhlich, J., Geurts, B. J., Kuerten, H. Springer International Publishing, pp. 129–134. DOI: 10.1007/978-3-030-04915-7_18. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Liu, L., Lav, C., Sandberg, R. D. (2020). “A-priori evaluation of data-driven models for large-eddy simulations in natural convection”. In: Proceedings of the 22nd Australasian Fluid Mechanics Conference AFMC2020, Brisbane, Australia, 7–10 December 2020. Ed. by Chanson, H., Brown, R. The University of Queensland, pp. 1–4. DOI: 10.14264/397bc48.

    2. Kim, M., Lim, J., Kim, S., Jee, S., Park, D. (2020). “Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer”. Computer Methods in Applied Mechanics and Engineering 371, 113287. DOI: 10.1016/j.cma.2020.113287.

    3. Qi, H., Li, X., Yu, C. (2020). “Subgrid-scale model based on the vorticity gradient tensor for rotating turbulent flows”. Acta Mechanica Sinica DOI: 10.1007/s10409-020-00960-5.

    4. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    5. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn].

  2. Streher, L. B., Silvis, M. H., Verstappen, R. (2018). “Mixed modeling for large-eddy simulation: The minimum-dissipation-Bardina-model”. In: Proceedings of the 7th European Conference on Computational Fluid Dynamics. Ed. by Owen, R., De Borst, R., Reese, J., Pearce, C. International Center for Numerical Methods in Engineering, Barcelona, Spain, pp. 335–345. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Rozema, W., Verstappen, R. W. C. P., Veldman, A. E. P., Kok, J. C. (2020). “Low-Dissipation Simulation Methods and Models for Turbulent Subsonic Flow”. Archives of Computational Methods in Engineering 27, 299–330. DOI: 10.1007/s11831-018-09307-7.

    2. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

  3. Silvis, M. H., Verstappen, R. (2018). “Constructing Physically Consistent Subgrid-Scale Models for Large-Eddy Simulation of Incompressible Turbulent Flows”. In: Turbulence and Interactions: Proceedings of the TI 2015 Conference. Ed. by Deville, M. O., Couaillier, V., Estivalezes, J.-L., Gleize, V., Lê, T.-H., Terracol, M., Vincent, S. Springer International Publishing, pp. 241–247. DOI: 10.1007/978-3-319-60387-2_26. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    2. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn].

    3. Silvis, M. H., Remmerswaal, R. A., Verstappen, R. (2017). “Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows”. Physics of Fluids 29, 015105. DOI: 10.1063/1.4974093.

  4. Silvis, M. H., Remmerswaal, R. A., Verstappen, R. (2017). “A Framework for the Assessment and Creation of Subgrid-Scale Models for Large-Eddy Simulation”. In: Progress in Turbulence VII: Proceedings of the iTi Conference in Turbulence 2016. Ed. by Örlü, R., Talamelli, A., Oberlack, M., Peinke, J. Springer International Publishing, pp. 133–139. DOI: 10.1007/978-3-319-57934-4_19. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    2. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn].

  5. Silvis, M. H., Trias, F. X., Abkar, M., Bae, H. J., Lozano-Durán, A., Verstappen, R. W. C. P. (2016). “Exploring nonlinear subgrid-scale models and new characteristic length scales for large-eddy simulation”. In: Studying Turbulence Using Numerical Simulation Databases - XVI: Proceedings of the 2016 Summer Program. Ed. by Moin, P., Urzay, J. Center for Turbulence Research, Stanford University, pp. 265–274. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Andrade, J. R., Martins, R. S., Thompson, R. L., De Silveira Neto, A., Mompean, G. (n.d.). “A non-linear subgrid-scale closure model employing the non-persistence-of-straining tensor” (submitted).

    2. Huang, X. L. D., Yang, X. I. A., Kunz, R. F. (2019). “Wall-modeled large-eddy simulations of spanwise rotating turbulent channels–Comparing a physics-based approach and a data-based approach”. Physics of Fluids 31, 125105. DOI: 10.1063/1.5129178.

    3. Lozano-Durán, A., Bae, H. J. (2019). “Error scaling of large-eddy simulation in the outer region of wall-bounded turbulence”. Journal of Computational Physics DOI: 10.1016/j.jcp.2019.04.063.

    4. Rozema, W., Verstappen, R. W. C. P., Veldman, A. E. P., Kok, J. C. (2020). “Low-Dissipation Simulation Methods and Models for Turbulent Subsonic Flow”. Archives of Computational Methods in Engineering 27, 299–330. DOI: 10.1007/s11831-018-09307-7.

    5. Bae, H. J., Lozano-Durán, A., Bose, S. T., Moin, P. (2019). “Dynamic slip wall model for large-eddy simulation”. Journal of Fluid Mechanics 859, 400–432. DOI: 10.1017/jfm.2018.838.

    6. Bae, H. J. (2018). “Investigation of dynamic subgrid-scale and wall models for turbulent boundary layers”. PhD thesis. Stanford University, Stanford, California. URL: https://purl.stanford.edu/yk422nc2017.

    7. Trias, F. X., Folch, D., Gorobets, A., Oliva, A. (2018). “Building Proper Invariants for Large-Eddy Simulation”. In: Direct and Large-Eddy Simulation X. Ed. by Grigoriadis, D. G. E., Geurts, B. J., Kuerten, H., Fröhlich, J., Armenio, V. Springer International Publishing, pp. 165–171. DOI: 10.1007/978-3-319-63212-4_20.

    8. Veldman, A. E. P., Seubers, H., Van der Plas, P., Helder, J. (2017). “Accelerated free-surface flow simulations with interactively moving bodies”. In: MARINE 2017 - Computational Methods in Marine Engineering VII. Ed. by Visonneau, M., Queutey, P., Le Touzé, D. International Center for Numerical Methods in Engineering, Barcelona, Spain, pp. 604–615. URL: http://congress.cimne.com/marine2017/frontal/Doc/Ebookmarine.pdf.

    9. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

    10. Silvis, M. H., Bae, H. J., Trias, F. X., Abkar, M., Verstappen, R. (2019). “A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows”. arXiv: 1904.12748 [physics.flu-dyn].

    11. Silvis, M. H., Verstappen, R. (2019). “Nonlinear Subgrid-Scale Models for Large-Eddy Simulation of Rotating Turbulent Flows”. In: Direct and Large-Eddy Simulation XI. Ed. by Salvetti, M. V., Armenio, V., Fröhlich, J., Geurts, B. J., Kuerten, H. Springer International Publishing, pp. 129–134. DOI: 10.1007/978-3-030-04915-7_18.

    12. Trias, F. X., Gorobets, A., Silvis, M. H., Verstappen, R. W. C. P., Oliva, A. (2017). “A new subgrid characteristic length for turbulence simulations on anisotropic grids”. Physics of Fluids 29, 115109. DOI: 10.1063/1.5012546.

Popular science writing

  1. Silvis, M. (2015). “Osborne Reynolds: On the phenomenon of turbulence”. Periodiek: Magazine of the FMF, student association for Physics and Mathematics, University of Groningen 3, 14–17. URL: http://perio.fmf.nl/archief/perio_2015-3.pdf#page=14. PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

Theses

  1. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. DOI: 10.33612/diss.133469979. PDF Abstract BibTeX BibLaTeX

  2. Silvis, M. H. (2012). “Signatures of exciton-phonon coupling in linear absorption spectra of molecular aggregates: A polaron transformation approach”. Master's thesis. University of Groningen, The Netherlands. PDF Abstract BibTeX BibLaTeX

  3. Silvis, M. H. (2010). “A quaternion formulation of the Dirac equation”. Bachelor's thesis. University of Groningen, The Netherlands. PDF Abstract BibTeX BibLaTeX

Past preprints

  1. Streher, L. B., Silvis, M. H., Cifani, P., Verstappen, R. W. C. P. (2020). “Mixed modeling for large-eddy simulation: The single-layer and two-layer minimum-dissipation-Bardina models”. arXiv: 2006.08516 [physics.flu-dyn] (published as AIP Advances 11, 015002 (2021)). PDF Abstract BibTeX BibLaTeX

    Cited by:

    1. Silvis, M. H. (2020). “Physics-based turbulence models for large-eddy simulation: Theory and application to rotating turbulent flows”. PhD thesis. University of Groningen, The Netherlands. URL: https://hdl.handle.net/11370/bd2c4f3a-34c7-488a-80c0-383722459d5f.

  2. Trias, F. X., Gorobets, A., Silvis, M. H., Verstappen, R. W. C. P., Oliva, A. (2017). “A new subgrid characteristic length for turbulence simulations on anisotropic grids”. arXiv: 1711.03014 [physics.flu-dyn] (published as Physics of Fluids 29, 115109 (2017)). PDF Abstract BibTeX BibLaTeX

  3. Silvis, M. H., Remmerswaal, R. A., Verstappen, R. (2016). “Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows”. arXiv: 1608.09015 [physics.flu-dyn] (published as Physics of Fluids 29, 015105 (2017)). PDF Abstract BibTeX BibLaTeX

Bibliography

BibTeX BibLaTeX

Metrics

Peer-reviewed journal publications: 4
Preprints: 2
Peer-reviewed conference proceedings: 5

Citations: 93
Citations excluding self-citations: 66

h-index: 5
h-index excluding self-citations: 4