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Abstract Direct numerical simulations of the incompressible Navier—Stokes equations are not feasible
yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations
are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy
Simulation (LES) are probably the most popular example thereof. This type of models requires
the calculation of a subgrid characteristic length which is usually associated with the local grid size.
For isotropic grids this is equal to the mesh step. However, for anisotropic or unstructured grids,
such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers,
a consensus on defining the subgrid characteristic length has not been reached yet despite the fact
that it can strongly affect the performance of LES models. In this context, a new definition of the
subgrid characteristic length is presented in this work. This flow-dependent length scale is based on
the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and
mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh
anisotropies on simulation results. The performance of the proposed subgrid characteristic length is
successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially
refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested
for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length
scales show that the proposed definition is much more robust with respect to mesh anisotropies and
has a great potential to be used in complex geometries where highly skewed (unstructured) meshes
are present.

1 Introduction

The Navier-Stokes (NS) equations are an excellent mathematical model for turbulent flows. However,
direct numerical simulations are not feasible yet for most practical turbulent flows, because the
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nonlinear convective term produces far too many scales of motion. Hence, in the foreseeable future,
numerical simulations of turbulent flows will have to resort to models of the small scales. The most
popular example thereof is Large-Eddy Simulation (LES). Briefly, the LES equations arise from
applying a spatial filter, with filter length A, to the NS equations, resulting in

du+ (@-Vw=vVu-Vp-V-r; V-u=0. (1)

Here, @ is the filtered velocity and 7 = ©w ® u —w® is the subgrid stress (SGS) tensor that represents
the effect of the unresolved scales. It is assumed that the filter 4 — @ commutes with differentiation.
Since the SGS tensor, 7, depends not only on the filtered velocity, @, but also on the full velocity field,
u, we encounter a closure problem. We thus have to approximate 7 by a tensor depending only on
the filtered velocity, i.e., T ~ 7(u).
Because of its inherent simplicity and robustness, the eddy-viscosity assumption is by far the most
used closure model,
7(u) ~ —2v.S(w), (2)

where v, denotes the eddy-viscosity and S(@) = 1/2(Va + Va!) is the rate-of-strain tensor. Notice
that 7(w) is considered traceless without loss of generality because the trace can be included as part of
the filtered pressure, p. Then, most of the existing eddy-viscosity models can be expressed as follows:

ve = (CnA)2D,, (@), (3)

where C), is the model constant, A is the subgrid characteristic length and D,, (@) is the differential
operator with units of frequency associated with the model. Here, no summation over m is implied.

In the last few decades research has primarily focused on either the calculation of the model
constant, C,, or the development of more appropriate model operators, D,,(w). An example of the
former is the approach proposed by Lilly [12] to determine the model constant of the Smagorinsky
model [32]. For an isotropic mesh, i.e., A = Az = Ay = Az, and under the assumption that the
cutoff wave number k. = m/A lies within the inertial range of a universal Kolmogorov spectrum,
E(k) = Cxe?/3k=/3, a model’s constant, Cyy,, can be found by assuming that its dissipation is equal to
the turbulent kinetic energy dissipation, €. In this way, Lilly [12] obtained the Smagorinsky constant
Cs = (2/3Ck)**/m (taking a value of Cx ~ 1.58 for the Kolmogorov constant [8] leads to C's ~ 0.17).

The classical Smagorinsky model [32] has the disadvantage that its differential operator, D,,(w) =
|S(@)|, does not vanish near solid walls. Early attempts to overcome this inherent problem of the
Smagorinsky model made use of wall functions [19, 24]. Later, Germano et al. [10] proposed the
dynamic procedure, in which the constant C,, is computed with the help of the Jacobi identity (in
least-squares sense), as was originally proposed by Lilly [13]. However, this approach leads to highly
variable coefficient fields with a significant fraction of negative values for v.. This can cause numerical
instability in simulations. Thus, averaging with respect to the homogeneous direction(s) and ad
hoc clipping of v, are, in general, necessary. Therefore, the original dynamic procedure cannot be
applied to geometrically complex flows without homogeneous directions. Several attempts to overcome
these intrinsic limitations can be found in the literature: namely, the dynamic localization model and
the Lagrangian dynamic model were, respectively, proposed by Ghosal et al. [11] and Meneveau et
al. [16]. In the same vein, Park et al. [23] introduced two global dynamic approaches: a dynamic
global model based on the Germano identity [9] and a dynamic global model with two test filters
based on the “global equilibrium” between the viscous dissipation and the SGS dissipation. Later,
You and Moin [44] presented a dynamic global approach using only one test filter. Tejada-Martinez
and Jansen [34, 35] proposed an approach where the filter width ratio, the sole model parameter in a
dynamic Smagorinsky model, is computed dynamically too. To do so, they assume scale invariance
and make use of a secondary test filter.

To construct models that vanish near solid walls, one can alternatively change the differential
operator, D, (w). Examples thereof are the WALE model [21], Vreman’s model [42], the QR model [40]



and the o-model [22]. This list can be completed with a novel eddy-viscosity model proposed by
Ryu and Iaccarino [25] and two eddy-viscosity models recently proposed by the authors of this paper:
namely, the S3PQR models [38] and the vortex-stretching-based eddy-viscosity model [30].

Surprisingly, in the LES community little attention has been paid to the computation of the subgrid
characteristic length, A, which is also a key element of any eddy-viscosity model [see Eq. (3)]. Due to
its simplicity and applicability to unstructured meshes, nowadays the most widely used approach to
compute the subgrid characteristic length is the one proposed by Deardorff [6], i.e., the cube root of
the cell volume. For a Cartesian grid it reads

Ayol = (AxAyAz)l/g (4)

Extensions of this approach for anisotropic grids where proposed by Schumann [26], Lilly [14] and
Scotti et al. [28]. It was found that for small anisotropies Deardorff’s length scale is reasonably
accurate, whereas corrections are required for highly anisotropic meshes, such as the pancake-like
meshes that are often used to resolve near-wall turbulence or shear layers. For instance, the following
correction was proposed by Scotti et al. [28],

Ageo = f(ab aZ)Avola (5)

where f(ay,a2) = cosh4/4/27[(Ina1)? —Ina; Inas + (Inas)?] and a; = Az/Az, az = Ay/Az, assum-
ing that Az < Az and Ay < Az. Nevertheless, it is “still assume(d), however, that the small scale limit
of the simulation is in the Kolmogorov inertial sub-range in all directions. This is a serious limitation,
as the most common reason for applying anisotropic resolution is an expectation of anisotropic and/or
inhomogeneous turbulence, typically in regions close to a boundary” [14]. The definition of A given
in Eq. (5) was tested by Scotti et al. [27] for forced isotropic turbulence using highly anisotropic
grids. They compared the correction factor f(ai,a2) with the correction fg,,(a1,az) obtained by
applying the above-mentioned dynamic approach [10] to Cy, Aol fayn (a1, a2) (the dynamic approach
is usually applied to find the model constant, C),). They reached the conclusion that the dynamic
model reproduces the correct trend for pancake-like grids (as = 1, Az « Ay = Az), but fails for
pencil-like ones (a1 = ag, Ax = Ay « Az). Another limitation of the approach proposed by Scotti et
al. [28] [see Eq. (5)] is that it is applicable only to structured Cartesian grids. To circumvent this,
Colosqui and Oberai [4] proposed an extension applicable to unstructured meshes. They assume that
the second-order structure function satisfies Kolmogorov’s hypotheses.

Alternative definitions of the subgrid characteristic length scale, A, include the maximum of the
cell sizes,

Apax = max(Ax, Ay, Az), (6)
the L?-norm of the tensor A = diag(Ax, Ay, Az) divided by /3,

Arn = v/ (A22 + Ay? + Az2)/3, (7)
and the square root of the harmonic mean of the squares of the grid sizes

Arapl = V/3/(1/Az2 + 1/Ay? + 1/Az22), (8)

which is directly related to the largest eigenvalue of the discrete approximation of the (negative)
Laplacian, —V?2. The first definition, Anax, was originally proposed in the first presentation of the
Detached-Eddy Simulation (DES) method by Spalart et al. [33] as a safer and robust definition of A.

More recent definitions of the subgrid characteristic length scale are also found in the context of
DES. Namely, Chauvet et al. [2] introduced the concept of sensitizing A to the local velocity field. In
particular, they made A dependent on the orientation of the vorticity vector, w = (wz, wy,w;) = V xu,

w =/ (W2 AYAz + wiAzAz + wiAxAy)/|w|?, 9
Au = ) (@2AYAZ +W2ATAZ +w2ATAyY)/|w]? (9)
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with some minor corrections to prevent indeterminate forms of type 0/0 (see the original paper [2] for
details). The formulation was subsequently generalized for unstructured meshes by Deck [7]. The
definition of A, detects the alignment of the vorticity vector, w, with an axis, e.g., if w = (0,0, w,) then
A, reduces to 4/AxAy. This approach was motivated by the fact that Ay results in an excessive
generation of SGS dissipation in the initial region of shear layers typically resolved on highly anisotropic
grids. In a DES simulation, this results in an artificial delay of Kelvin—Helmholtz instabilities because
the model switches from Reynolds-averaged Navier—Stokes (RANS) to LES mode further downstream.
However, like Deardorff’s definition of A given in Eq. (4), the definition given in Eq. (9) may still
involve the smallest of the grid spacings. This may lead to very low values of eddy-viscosity.

To circumvent this problem, recently Mockett et al. [18] proposed the following flow-dependent
subgrid characteristic length scale,

~ 1

B = 75 i gl =Ll (10)
where I = w/|w| x r,, and 7, (n = 1,...,8 for a hexahedral cell) are the locations of the cell vertices.
The quantity A, represents the diameter of the set of cross-products points, l,,, divided by V3. In
the above-described case with w = (0,0,w,) it reduces to A, = +/(Az2 + Ay?)/3. Therefore, it is

O(max{Az, Ay}) instead of Apax = Az (for the typical situation where Az > Az and Az > Ay) or
A, = VAzAy. Thus, “unlike A, the definition (10) never leads to a strong effect of the smallest
grid-spacing on the subgrid-scale A even though it achieves the desired decrease compared to the Apmax
definition in the quasi-2D flow regions treated on strongly anisotropic grids.” [29].

More recently, Shur et al. [29] proposed to modify the definition of A, given in Eq. (10) by
introducing a nondimensional function 0 < Fg (VT M) < 1, resulting in the Shear Layer Adapted
(SLA) subgrid scale )

Agra = A Frg(VTM), (11)

where the Vortex Tilting Measure (VTM) is given by
I(S - w) x w

W /—Qs

where S is the traceless part of the rate-of-strain tensor, S = 1/2(V@ + V@!), i.e., S = S — 1/3tr(S)l.
Note that for incompressible flows tr(S) = V - @ = 0, therefore, S = S. Finally Qa denotes the
second invariant of a second-order tensor A, Qa = 1/2{tr?(A) — tr(A?)}. The vortex tilting measure is
bounded, 0 < VIT'M < 1, and it takes zero value when the vorticity is aligned with an eigenvector of S
with eigenvalue \;, i.e., Sw = \;w. Therefore, the VIM can be viewed as a measure of how much the
rate-of-strain tensor tilts the vorticity vector towards another direction. Finally, the function Fg
is aimed at unlocking the Kelvin—Helmholtz instability in the initial part of shear layers. Different
functions F gy were proposed by Shur et al. [29] with the basic requirements that 0 < Frg(VTM) < 1
and FKH(O) =0 and FKH(l) =1.

Despite the above-mentioned length scales, so far no consensus has been reached on how to define
the subgrid characteristic length scale, particularly when considering anisotropic or unstructured grids.
In this work, we therefore propose a new flow-dependent subgrid characteristic length scale that is
based on the subgrid stress tensor, 7, and its representations on different grids. This simple and robust
definition of A reduces the effect of mesh anisotropies on the performance of SGS models.

The structure of this paper is as follows. In Section 2 all the above-mentioned definitions of the
subgrid characteristic length are compared and classified on the basis of a list of desirable properties.
These properties are based on physical, numerical and/or practical arguments. Then, within this
framework, a new subgrid characteristic length, based on the Taylor-series expansion of the SGS
tensor in the computational space, is proposed in Section 3. Moreover, in Section 4 a simple extension
of this length scale for unstructured grids is proposed. In Section 5 the newly proposed length scale

VTM = (12)



Avol ASco Ama»x AL2 ALapl Aw Aw ASLA Alsq
Formula Eq. (4) Eq.(5) Eq.(6) Eq.(7) Eq. (8) Eq.(9) Eq.(10) Egq.(11) Eq. (18)

P1 Yes Yes Yes Yes Yes Yes Yes Yes Yes
P2 Yes Yes Yes Yes Yes Yes Yes Yes Yes
P3 No No No No No Yes Yes Yes Yes
P4 Yes No No? No No? NoP Yes Yes Yes
P5 Low Medium Low Low Low Medium High High Low

aPossible with some adaptations.
PDeck [7] proposed a generalization for unstructured meshes.

Table 1: Properties of different definitions of the subgrid characteristic length, A. Namely, P1: positive
(A = 0), local and frame invariant; P2: bounded, i.e., given a structured Cartesian mesh where
Axr < Ay < Az, Ax < A < Az; P3: sensitive to the local flow field; P4: applicable to unstructured
meshes; P5: computational cost.

is tested in wall-resolved large-eddy simulations on highly anisotropic structured grids (test cases:
decaying isotropic turbulence and a plane-channel flow) and unstructured grids (test case: turbulent
flow around a square cylinder), confirming that it is a robust definition that reduces the effects of
mesh anisotropies on the performance of LES models. Finally, relevant results are summarized and
conclusions are given in Section 6.

2 Properties of the subgrid characteristic length

Starting from the classical Smagorinsky model [32], many eddy-viscosity models [see Eq. (2)] have
been proposed (see the work of Trias et al. [38], for a recent review). The definition of v, given in
Eq. (3) provides a general template for most of them. Therefore, a subgrid characteristic length, A,
which is commonly associated with the local grid size, is required. Hence, for isotropic grids A is
equal to the mesh size, i.e., A = Ax = Ay = Az. However, for anisotropic or unstructured grids, a
consensus on defining the subgrid characteristic length has not been reached yet. Despite the fact that
in some situations it may provide very inaccurate results, three and a half decades later, the approach
proposed by Deardorff [6], i.e., the cube root of the cell volume [see Eq. (4)], is by far the most widely
used.

Alternative methods to compute the subgrid characteristic length scale, A, have been reviewed
in Section 1. They are classified in Table 1 according to a list of desirable properties for a (proper)
definition of A. These properties are based on physical, numerical, and/or practical arguments.
Namely, the first property, denoted as P1, entails both positiveness and locality. Although from
a physical point of view negative values of v, may be justified with the backscatter phenomenon,
from a numerical point of view, the condition v, > 0 is, in general, considered appropriate because it
guarantees stability. Further, the LES equations should be Galilean invariant. In order to preserve this
physical principle, the flow-dependent definitions of A (see property P3 below) are based on invariants
derived from the gradient of the resolved velocity field, G = V@. In doing so, the condition of locality
is also achieved. From a practical point of view, locality is a desirable feature especially if the model is
aimed to be applied in complex flows. The second property (P2) requires that A is properly bounded,
i.e., given a structured Cartesian mesh where Az < Ay < Az, we need Az < A < Az. These first
two properties P1 and P2 are achieved by all the length scales shown in Table 1. The third property
(P3) classifies the methods to compute A in two families: those that solely depend on geometrical
properties of the mesh, and those that are also dependent on the local flow topology, i.e., the velocity
gradient, G.

Assuming that the grid is Cartesian, we can express the subgrid characteristic length scales that



are fully mesh-based in terms of the properties of the following second-order diagonal tensor,
A = diag(Ax, Ay, Az). (13)

We take Az < Ay < Az without loss of generality. Indeed the aforementioned mesh-based length
definitions can be written as

2 2
Ayol = R1A/37 Ageo = f(a17 GZ)RlA/ga Apax = )\1Aa A = \/tr(gA ) = \/PA 32QA, (14)
where the correction function f(a1, az) was defined in Eq. (5) and a1 = Az/Az, ap = Ay/Az. Moreover,
Pa = tr(A), Qa = 1/2{tr*(A) — tr(A?)} and R = det(A) = 1/6{tr3(A) — 3tr(A)tr(A?) + 2tr(A3)}
represent the first, second and third invariant of the second-order tensor A, respectively. The
three eigenvalues, A2 > A& > A\, of A are solutions of the characteristic equation, det(Al — A) =
A3 — PA)\Q + QaN— Ra = 0.

The aforementioned characteristic length scale definitions that depend on both the mesh and the
flow topology can also be expressed in terms of invariants, namely the invariants of A, the velocity
gradient G and the invariants of G’s symmetric and anti-symmetric part. To this end, note that the
vorticity vector w = (wg,wy,w.) = V X @ can be expressed in terms of the rate-of-rotation tensor,
Q=1/2(G—GT), as wy, = —€;j182;; where €5, is the Levi-Civita symbol. Here, summation over
repeated indices is implied. Finally, the symmetric part of G is the rate-of-strain tensor, S = 1/2(G+G”).
These are the flow-dependent quantities required to compute the definitions of A of Chauvet et al. [2]
[see the definition of A, given in Eq. (9)], Mockett et al. [18] [see the definition of A,, given in Eq. (10)]
and the modification Agp,a proposed by Shur et al. [29] [see Eq. (11)].

The last two desirable properties of subgrid characteristic length scales are of practical interest.
Namely, property P4 refers to the applicability of the method for unstructured meshes. Among the
definitions of A that do not depend on the local flow, only the approach of Deardorff [6] can be
straightforwardly used for unstructured grids. Recent flow-dependent definitions of A are potentially
applicable for unstructured grids, although some of them have a relatively high computational cost.
In this regard, to complete the list of properties, it is also desirable that the definition of A is
well conditioned and has a low (or moderate) computational cost (property P5). In this respect,
flow-dependent definitions of A may be problematic, having a significantly higher computational cost.
Moreover, they require special attention for indeterminate forms of type 0/0.

The new definition of the subgrid characteristic length, Ay, which is presented in the next section
matches all the above-mentioned properties with an inherent simplicity and a moderate computational
cost.

3 Building a new subgrid characteristic length

Several approaches to compute the subgrid characteristic length, A, can be found in the literature
(see Section 1). Their properties have been analyzed and compared in Section 2 (see Table 1). As
remarked before, despite these existing length scales, no consensus has been reached on how to define
the subgrid characteristic length scale, particularly for (highly) anisotropic or unstructured grids. In
this section, we therefore propose a new flow-dependent subgrid characteristic length scale that is
based on the subgrid stress tensor, 7, and its representations on different grids.

The subgrid characteristic length, A, appears in a natural way when we consider the lowest-
order approximation of the subgrid stress tensor, 7 = u®@ u — uw ® u, i.e., the unclosed term in the
filtered Navier—Stokes equations, Eq. (1). The approximation of the subgrid stress is obtained by
approximating the residual velocity v’ = u — 7.

To start, we restrict ourselves to one spatial direction and consider a box filter. The residue of
the box filter can be related to the error of the midpoint rule for numerical integration, denoted by



Siiiﬁg u(z)dr = Azu(z) + € with € = %—f&’xé’xu(c) where c lies somewhere

€ here. We have u =
in between x — Az/2 and x + Az/2. An expression for the residue of the one-dimensional box
filter is then obtained by dividing this error by —Axz and adding u. Thus to lowest order we get
W' (x) = =42 0,0,u(z) + O(Azh).

On a three-dimensional, isotropic grid, i.e., A = Az = Ay = Az, the above approximation of the
residue becomes v’ = —%fv - Vu + O(A*). With the help of this approximation it can be shown that

the subgrid stress tensor is given by [3]

(@) = §GGT +0O(AY). (15)

The leading-order term of Eq. (15) is the gradient model proposed by Clark et al. [3], where A denotes
the filter length. Equation (15) has been derived for the box filter. However, it can be shown that the
same result is obtained for any convolution filter having a symmetric kernel [43].

We stress that in the above derivation the grid is assumed to be isotropic, that is A = Az = Ay =
Az. For an anisotropic grid, we can postulate that the lowest-order approximation of the subgrid
stress also provides us with 7(w) ~ %GGT, that is, the approximation (1) depends quadratically
on the velocity gradient, (2) is given by a symmetric tensor, (3) is invariant under a rotation of the
coordinate system, and (4) is proportional to A2. Here, however, we do not yet know how to define
the filter length, A, because the grid is anisotropic. For the gradient model, however, we can define
the filter length by mapping the anisotropic mesh onto an isotropic mesh. Therefore we consider
the coordinate transformation & = x/Ax, § = y/Ay and 2 = z/Az. Expanding the subgrid stress
as before, but now in the new, isotropic, coordinate system z, ¢, 2 and applying the chain rule for
differentiation we obtain

1
(W) = EGAGZ +0(AY). (16)
Here, the velocity gradient on the anisotropic grid is defined as
Ga = GA, (17)

where A is the second-order tensor containing the mesh information given by Eq. (13). Equation (16)
does not require an explicit definition of the filter length, A. In fact the filter length is hidden in Ga
and is not represented by a scalar but by the tensor A. Since both Eq. (15) and Eq. (16) represent
the lowest-order approximation of the subgrid stress, we can equate them and thus define the filter
length A in Eq. (15) for anisotropic meshes. Here it may be remarked that we equate tensors; hence
the equality is to be understood in least-square sense. This leads to the following flow-dependent

definition of A,
GAGY : GGT
Agq = \| ot 1
7\ TGGT : GGT (18)

We first remark that this length scale reduces to A on an isotropic mesh. Secondly, since Ay is
formally based on the lowest-order approximation of the subgrid stress, we see it as a generic way to
define the filter length. It can thus be applied in any turbulence model, not only in eddy-viscosity
models, Eq. (3). With respect to the properties discussed in Section 2, the characteristic length scale
given by Eq. (18) depends on the velocity gradient, G. Therefore, it is locally defined and frame
invariant (P1). Moreover, A}y is obviously sensitive to flow orientation (property P3).
Furthermore, it may be noted that the numerator in Eq. (18) can be viewed as the Frobenius norm
of the tensor GTGA, i.e., GAGL : GG = tr(GAGAGGT) = tr(GAZGTGGT) = tr(AGTG(AGTG)T) =
AGTG : AGTG. Moreover, GG : GG = tr(GGTGGT) = tr(GTGGTG) = GTG : GT'G, so we can also

express Ajgq as
AGTG: AGTG
Aisq = \/ GTG:GIG (19)

7
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Figure 1: Comparison between A and Ay, for the simple 2D flow defined in Eq. (21) with different
values of § = {1/5,1/2,2,5,10}.

From this definition it is obvious that Ay is positive and well bounded (properties P1 and P2).
Its applicability for unstructured meshes (property P4) relies on the proper adaptation of the tensor
A (see Section 4). Regarding property P5, the computational cost of Ay is relatively small when
compared to the other flow-dependent (property P3) length scales discussed in this paper and special
attention is only required for indeterminate forms of type 0/0.

The inherent simplicity and mathematical properties of the proposed length scale, as well as its
basis in representations of the subgrid stress tensor on different grids suggest that it can be a robust
definition that minimizes the effects of mesh anisotropies on the performance of LES models. Note
that the definition of Ajq provided in Eq. (18) was already presented and partially evaluated during
the Stanford CTR Summer Program 2016 [31] and the CEAA’16 conference [39].

To get a better understanding of Ay, we consider several special cases. First of all, as remarked
before, this length scale reduces to A on an isotropic mesh. Secondly, for purely rotating flows,
i.e., S=0and G = Q, Ay reduces to

20
S , (20)

A \/w%(Agﬂ + Az?) + w2 (Ax? + Az?) + w2(Az? + Ay?)
Isq =

which resembles the definition of A, proposed by Chauvet et al. [2] given in Eq. (9). Actually, similar
to the definition of A proposed by Mockett et al. [18] given in Eq. (10), Ajyq is O(max{Az, Ay})
instead of A, = v/AxAy. Therefore, it also avoids a strong effect of the smallest grid-spacing. Finally,
results obtained for a simple 2D mesh and flow,

(3 2) ol

0 Bt
are displayed in Figure 1. Notice that the size of the control volume remains equal to unity; therefore,
Avol = 1, regardless of the value of 8. On the other hand, values of w in Figure 1 range from a pure
shear flow (w = 0) to a simple shear flow (w = 1/2), to a pure rotating flow (w = 1). For the two
limiting situations Ajq = 4/(8% + 872)/2 whereas for w = 1/2 it reads Ajq = 37 !. Recalling that in

0 1

1—-2w 0 (21)
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Figure 2: Scaling of different definitions of A for a Cartesian mesh with Ax = Az =1 and Ay = a.
Average results of Ajsq have been obtained from a large sample of random traceless velocity gradient
tensors.

the particular case Az = 8 and Ay = 871, Aq = +/(Az2 + Ay?)/2 for w = 0 (pure shear) and w = 1
(pure rotation), whereas Ajsq = Ay for the simple shear flow with w = 1/2. The latter corresponds
quite well with the typical quasi-2D grid-aligned flow in the initial region of a shear layer. As it could
be expected, the computed Ay, is equal to the grid size in the direction orthogonal to the shear layer.
The pure rotating flow (w = 1) is just a particular case of Eq. (20) with w; = wy, = 0 and w, = 1.

In order to study in more detail the effect of mesh anisotropies for different definitions of A, let
us consider a Cartesian mesh with Az = Ay = 1 and Az = «. In this case, the geometry-dependent
definitions of A result in

Agol = al/?’, Ageo = f(min(a, ™), min(1, o™

/2 + a2 / (22)
Amax = max(l a ALQ = 3 ALapl 20(2 i 1

These functions are displayed in Figure 2 using a log-log scale. Values of a > 1 correspond to pencil-like
meshes (Azxz = Ay « Az) whereas values of a < 1 correspond to pancake-like meshes (Az « Ay = Az).
Averaged results of Ajyq are also displayed; they have been obtained from a large sample of random
traceless velocity gradient tensors, G. Notice that this simple random procedure was able to produce
fairly good predictions to determine the model constant, C,,, for different SGS models [38]. Among
all the geometry-dependent definitions, for the mesh considered here, the closest to (Ajsq) by far is the
definition of Ars given in Eq. (7). Actually, for very simple flow configurations such as pure shear or
pure rotation, Ay reduces to Ars. The second closest is the correction proposed by Scotti et al. [28]
[see Eq. (5)]. Finally, Apapl is the only definition that predicts values of A smaller than the classical
Deardorff definition, Ayo.

4 Jacobian-based extension for unstructured meshes

In Section 3, a new method to compute the subgrid characteristic length has been proposed. Although
it has been derived in the context of Cartesian meshes, the idea can be extended to unstructured meshes



by noticing that it basically consists in projecting the leading term of the Taylor series expansion of
[see Eq. (16)] onto the basic gradient model [see Eq. (15)].

For non-uniform Cartesian grids we considered the coordinate transformation & = x/Az, § = y/Ay
and 2 = z/Az. This led to a new, isotropic, coordinate system Z, ¢, 2. Then, applying the chain rule
for differentiation yielded the approximation of the subgrid stress tensor of Eq. (16). More generally,
let &;(z;) be a monotonic differentiable function which defines a mapping from the physical space in
the i-direction, z;, to the so-called computational space, &;. Using the chain rule we obtain

06 _ 00 dgi _ 106

-7 - " 2
dx;  0&dx;  J;0&] (23)

where J; is the Jacobian of the transformation x; — &;. Here, no summation over ¢ is implied. Recalling
that [G];; = Ou;/dz;, the leading term of 7 can be written more compactly as follows:

1 T —4
T = ﬁGgGg + O(A), (24)

where the gradient in the mapped space £ is represented by
Ge = GJ (25)

and J is the Jacobian of the transformation * — &. Notice that this first term is generic for
all practical filters [43] in the context of LES, i.e., filters with a Fourier transform starting with
G(k) = 1—k*A/2+ O(k*). At the discrete level, for a Cartesian grid the filter length in each direction
is taken equal to the mesh size in the same direction, i.e., A; = Az;. In this case, J = A and
Ge¢ = Ga = GA; therefore, the general expression given in Eq. (24) reduces to Eq. (16) for non-uniform
Cartesian meshes and to the well-known gradient model [3] given in Eq. (15) for uniform grid spacings.

At this point, it becomes clear that the extension of the new subgrid characteristic length Ay
[see Eq. (18) in Section 3] for unstructured meshes relies on the computation of the Jacobian, J, on
such grids. It is important to note that the gradient tensor, G, is actually being computed in any LES
code. Below, the method to compute the Jacobian, J, is solely based on the discrete gradient operator;
therefore, it can be easily applied to any existing code. Namely, using matrix-vector notation, the
discrete gradient operator is given by a block matrix

G,

Gop=| Gy | (26)
G

where ¢, = (¢1, 02, ..., ¢n)T € R, n is the number of unknowns in our domain and G, G, and G,
represent the discrete gradient operator for each spatial direction.

As a preview of things, we first consider the discretization of the gradient operator, G, in one
spatial direction with periodic boundary conditions. Let us consider three values of a smooth function
() pi—1 = d(wi-1), ¢i = d(x;) and ¢ir1 = ¢(xiv1) with x;_1 = 2; — Az and x;41 = z; + Az. By
a simple combination of Taylor series expansions of ¢(x) around x = z;, the following well-known
second-order accurate approximation of the derivative follows

0p(x;) < i1 — Pi—1
ox 2Ax ’

Then with a uniformly meshed periodic direction, G, results into a skew-symmetric circulant matrix
of the form

(27)

G, cire(0,1,0,---,0,—1). (28)

1
T 2Az
Thus, eigenvalues of G, lie on the imaginary axis, )\sz € I. Then, the eigenvalues can be easily
bounded with the help of the Gershgorin circle theorem, i.e., ])\sz| < 1/Az. Notice that the upper
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bound exactly corresponds to the Jacobian, J, = 1/Az, of the mapping from the physical to the
computational space for Cartesian grids. This idea can be extended to any grid or numerical method
if we consider that, at the discrete level, the Jacobian, J, is as a diagonal matrix

I
J = Jy , (29)
J-

which, similar to the Cartesian case, guarantees that the spectral norm of the gradient in the so-called
computational space, G = JG = (G, Gy, G.)T is equal to or smaller than unity, i.e., |G|l < 1. This
condition can easily be realized by using the Gershgorin circle theorem. Namely,

Mo —Gol < D1IGE| where  GF = JEGE, (30)
J#i
and G = (Gzlij Gy = [G.]i; and Ji = [J:]i,; are the coefficients of the matrices G, G5 and J,,
respectively. Since G (also G) is usually a zero-diagonal matrix, i.e., G;; = 0 (summation not implied),
the condition |G|z < 1 simplifies to

Mo <Ygnl <1 Yi=1,...n, (31)
J#i

where n is the number of unknowns in our domain. Finally, recalling that the Jacobian must be
positive, J;; > 0, and extending the previous analysis to the y and z directions, the following definition
for the Jacobian

1 1 1
Jri=— " Ji=—— Ji= =———, (32)
“ 22 1G] D ‘G?ﬂ “ 22 1G]
guarantees that inequalities (31) are always satisfied. Here, no summation over ¢ is implied. Therefore,
the spectral norm of G¢ is equal to or smaller than unity, i.e., |G|z < 1. In this way, the local Jacobian
for the node ¢, J;, is given by

Ji = T ' (33)
Ji;
Notice that the definitions of the Jacobian given in Eq. (32) are solely based on the coefficients of the
discrete gradient operator, G. Therefore, there is no restriction regarding the type of grid and the
numerical method. Moreover, it is worth noticing that for a Cartesian uniform mesh, this formula
reduces to J = diag(Az, Ay, Az) similar to the definition of A given in Eq. (13).
In this way, the subgrid characteristic length scale proposed in Section 3 is straightforwardly

extended to unstructured meshes by simply replacing A in Eq. (18) by the local Jacobian, J;, defined
in Egs. (32) and (33).

5 Numerical results

5.1 Decaying homogeneous isotropic turbulence

The numerical simulation of decaying isotropic turbulence was chosen as a first case to test the novel
definition of the subgrid characteristic length scale, Ajsq, proposed in Eq. (18). The configuration
corresponds to the classical experiment of Comte-Bellot and Corrsin (CBC) [5]. Large-eddy simulation
results have been obtained using the Smagorinsky model, for a set of (artificially) stretched meshes.
Namely, results for pancake-like meshes with 32 x 32 x N, and N, = {32, 64, 128,256, 512, 1024, 2048}
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Figure 3: Three-dimensional kinetic energy spectra as a function of computational wavenumber,
for decaying isotropic turbulence corresponding to the experiment of Comte-Bellot and Corrsin [5].
LES results have been obtained using the Smagorinsky model for a set of anisotropic meshes with
pancake-like (top) and pencil-like (bottom) control volumes. Results obtained with the novel definition
of Ajsq proposed in Eq. (18) are compared with the classical definition proposed by Deardorff given in
Eq. (4). For clarity, the latter results are shifted one decade down.

are displayed in Figure 3 (top). As expected, for increasing values of N, the results obtained using
the classical definition of Deardorff, given in Eq. (4), diverge. This is because the value of Ay tends
to zero for increasing N, and, therefore, the subgrid-scale model switches off. This is not the case for
the definition of Ay, proposed in this work. Interestingly, the results rapidly converge for increasing
values of N,. Therefore, the proposed definition of the subgrid characteristic length, Ay, seems to
minimize the effect of mesh anisotropies on the performance of subgrid-scale models.

Similar behavior is observed in Figure 3 (bottom) for pencil-like meshes with 32 x N, x N, grid cells,
where N, = {32,64,128,256,512,768}. In this case, the improper behavior of Deardorff’s definition
is even more evident because v, in Eq. (3) scales as O(Az*3) instead of the O(Az%3) scaling for
the pancake-like meshes. Therefore, the model switches off even more rapidly. Furthermore, it is
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Figure 4: Resolved kinetic energy (top) and enstrophy (bottom) as a function of the number of grid
points, N,, for decaying isotropic turbulence corresponding to the experiment of Comte-Bellot and
Corrsin [5]. LES results have been obtained using the Smagorinsky model for a set of anisotropic
meshes with pancake-like control volumes, i.e., 32 x 32 x IN,. Results obtained with the novel definition
of Ajgq proposed in Eq. (18) are compared with the definitions proposed by Deardorff [6], Aol [Eq. (4)],
Scotti et al. [28], Aseo [Eq. (5)], and Mockett et al. [18], Ay, [Eq. (10)], respectively.

worth mentioning that in this case this numerical artifact is visible for a wide range of wavenumbers,
whereas for pancake-like meshes, only the smallest resolved scales are affected in a significant manner.
On the other hand, LES results obtained with Aj, also tend to converge for increasing values of N .
Nevertheless, compared with the results obtained with pancake-like meshes, significant changes are
observed for the first three meshes, i.e., N, = {32,64,128}. This delay in the convergence of the
LES results may be attributed to the fact that more scales are actually being solved in two spatial
directions (instead of one for the pancake-like meshes). Therefore, the role of the LES model is
lessened, and differences in the results can be probably attributed to the natural convergence for grid
refinement. In any case, compared with the classical Deardorff approach, the newly proposed subgrid
characteristic length scale strongly reduces the artificial effects caused by mesh anisotropies while
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providing a natural convergence.

In order to analyze in more detail the effect of mesh anisotropies for different definitions of A,
two physical quantities of interest have been studied: namely, the resolved kinetic energy and the
resolved enstrophy. Results displayed in Figure 4 have been obtained with the same pancake-like
meshes (i.e., 32 x 32 x N, grid cells, where N, = {32, 64,128,256, 512, 1024, 2048}). In this case, apart
from the new definition, Ajy, and the Deardorff length scale, A,q, two additional definitions have
also been tested: the definition proposed by Scotti et al. [28], Agco, given in Eq. (5) and the definition
proposed by Mockett et al. [18], A, given in Eq. (10). It must be noted that for this comparison,
we have chosen Agc, because among all the definitions reviewed in Section 1 that solely depend on
geometrical properties of the mesh (see property P3 in Table 1) this is the length scale that provides
the best results. Regarding the flow-dependent definitions, we have chosen A, because this definition
was actually proposed as an improvement of the definition by Chauvet et al. [2] given in Eq. (9). The
definition proposed by Shur et al. [29], Agpa, given in Eq. (11) has not been considered here because
it is just a modification of A, specifically adapted to trigger the Kelvin—Helmholtz instability in the
initial part of shear layers.

As explained above, energy spectra obtained using Deardorff’s length scale Ay, diverge for
increasing values of IV, due to the fact that Ay, tends to zero and, therefore, the subgrid-scale model
switches off. This effect becomes even more evident for the resolved enstrophy (see Figure 4, bottom)
since this lack of SGS dissipation mainly affects the smallest resolved scales. This physically improper
behavior is strongly mitigated by other definitions of A. Namely, the definition proposed by Scotti et
al. [28], Asco, displays the weakest dependence with respect to N,. As explained in Section 1, this
definition of A was proposed as a correction of the Deardorff definition, Ay, for anisotropic meshes
with the assumption of an isotropic turbulent regime. Therefore, it is not surprising that this definition
behaves very robustly for a simulation of decaying homogeneous isotropic turbulence. On the other
hand, we can observe that the novel definition, Ajsq, and the definition proposed by Mockett et al. [18],
A, display a very similar behavior. Results for both resolved kinetic energy and enstrophy rapidly
converge for increasing values of IV,. Even more interestingly, taking the CBC results as an indication
of the trend the data should have, both definitions lead to significantly better solutions compared
with the original 323 mesh and the solution obtained with the definition proposed by Scotti et al. [28],
ASv:o-

5.2 Turbulent channel flow

To test the performance of the proposed definition of Ajq with the presence of walls, simulations of a
turbulent channel flow have also been considered. In this case, the code is based on a fourth-order
symmetry-preserving finite-volume discretization [41] of the incompressible Navier—Stokes equations
on structured staggered grids. Regarding the spatial discretization of the eddy-viscosity models, the
approach proposed by Trias et al. [36] has been used in conjunction with the S3QR model recently
proposed by Trias et al. [38]. Namely,

VngR = (Cs3qrA)2QE(1;TRZ/G6T> (34)

where Cy3py = 0.762, Qggr and Rggr are the second and third invariants of the symmetric second-order
tensor GG, and G is the gradient of the resolved velocity field, i.e., G = V@. Similar to Vreman’s
model [42], the S3QR model is also based on the invariants of the second-order tensor GGT. However, it
was designed to have the proper cubic near-wall behavior. Apart from this, it fulfills a set of desirable
properties, namely, positiveness, locality, Galilean invariance, and it automatically switches off for
laminar, 2D and axisymmetric flows. Furthermore, it is well conditioned, has a low computational
cost and has no intrinsic limitations for statistically inhomogeneous flows.

Figure 5 shows the results obtained from numerical simulations of a turbulent channel flow at
Re; = 395 for a set of (artificially) refined grids. The results are compared with the DNS data of

14



30 Re. =395 32x32xN,

25 e =

N,={32,128, 512}/,«'
20 /\ N,={32,128,

10
, DNS (MKM) ——
3 2 g New approach Ay, —-—
Deardoff A, -------
0 == :
! 10 100
"
y
12 |Re;=2395-32x32xN; DNS (MKM) N
New approach A, —-—
Deardoff A ------ .
-%\
M \\\_\

512}

Figure 5: Results for a turbulent channel flow at Re, = 395 obtained with a set of anisotropic meshes
using the S3PQ model [38]. Solid lines correspond to the direct numerical simulation of Moser et
al. [20]. Results obtained with the novel definition of Ay proposed in Eq. (18) are compared with the
classical definition proposed by Deardorff given in Eq. (4). For clarity, the former results are shifted
up. Top: mean streamwise velocity, (u). Bottom: turbulent kinetic energy, k.
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Figure 6: Results for a turbulent channel flow at Re, = 395 obtained with a set of anisotropic meshes
using the S3PQ model [38]. Solid lines correspond to the direct numerical simulation of Moser et
al. [20]. Results obtained with the novel definition of Ajq proposed in Eq. (18) are compared with the
definitions proposed by Deardorff [6], Avo [Eq. (4)], Scotti et al. [28], Ageo [Eq. (5)] and Mockett et
al. [18], A, [Eq. (10)], respectively. Top: mean streamwise velocity at channel mid-height, (W)]y=1-
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Moser et al. [20]. The dimensions of the channel are taken equal to those of the DNS, i.e., 2m x 2 x 7.
The starting point corresponds to a 322 mesh, which suffices to obtain a good agreement with the
DNS data. Therefore, the computational grid is very coarse in comparison with the DNS which was
performed on a 256 x 193 x 192 grid, i.e., the DNS used about 290 times more grid points than
this first simulation. The grid points are uniformly distributed in the stream-wise and the span-wise
directions, whereas the wall-normal points are distributed using hyperbolic sine functions. For the
lower half of the channel the distribution of points is given by

y; = sinh(yj/Ny)/sinh(v/2) j=0,1,...,N,/2, (35)

where N, denotes the number of grid points in the wall-normal direction. The stretching parameter,
v, is taken equal to 7. Then, the grid points in the upper half of the channel are computed by means
of symmetry. With this distribution and N, = 32, the first off-wall grid point is located at y* ~ 2.6,
i.e., inside the viscous sublayer (y* < 5), whereas Az ~ 77.5 and Azt ~ 38.8. Hence, the grid is
highly anisotropic in the near-wall region, e.g., Axt/Ay* ~ 14.7 for the first off-wall control volume.

Apart from the first simulation, two additional meshes (with N, = 128 and N, = 512) have been
used to investigate the effect of A. We chose to refine in the span-wise direction because simulation
results should not be too much affected compared with the other two directions. Again, as can be
seen from Figure 5, the results obtained with the new definition of A are much more robust to mesh
anisotropies. It is remarkable that almost no changes are observed in the mean velocity profile when
the newly proposed length scale is employed, whereas significant changes are observed for Deardorft’s
classical definition. Similar behavior is observed for the resolved turbulent kinetic energy, especially in
the bulk region where results obtained with the new length scale are almost independent of the value
of N,.

To study the effect of mesh anisotropies for other definitions of A, results of the mean stream-wise
velocity and turbulent kinetic energy at channel mid-height are displayed in Figure 6. Similar to the
previous test case, results obtained using the definitions proposed by Scotti et al. [28], Agco, given in
Eq. (5) and by Mockett et al. [18], Ay, given in Eq. (10) are also shown for comparison. In this case,
similar to the simulation of decaying homogeneous isotropic turbulence, the results obtained using
Deardorfl’s definition, Ayq, are strongly influenced by the mesh anisotropy. Again, other definitions
tend to mitigate this. Despite the fact that it is based on the assumption of isotropic turbulence, the
robustness of the definition proposed by Scotti et al. [28] regarding the turbulent kinetic energy is
remarkable (see Figure 6, bottom). However, its behavior is not so satisfactory regarding the average
velocity field in the center of the channel (see Figure 6, top). The least to be expected from numerical
simulations of turbulence is a robust prediction of the mean flow; therefore, the new definition, Ay,
and the definition A,, proposed by Mockett et al. [18], display a significantly more robust behavior in
this regard. However, the definition A, is not so robust when predicting the turbulent kinetic energy
(see Figure 6, bottom) where the results obtained with the new definition, A}y, are almost not affected
when NV, increases. In summary, the results obtained using the new length scale, Ay, are at least
as good as the best results obtained by other definitions with the advantage of having a much lower
computational cost compared with A, and being much easier to be used for unstructured grids.

5.3 Flow around a square cylinder

Finally, to test the performance of the proposed length scale with unstructured meshes, the turbulent
flow around a square cylinder has been considered. In this case, the Reynolds number, Re = UD/v =
22000, is based on the inflow velocity, U, and the cylinder width, D. This is a challenging test case
for LES. Apart from the well-known von Karman vortex shedding in the wake region, this regime
is characterized by the clear presence of Kelvin—Helmholtz vortical structures produced by the flow
separation at the leading edge of the cylinder. The size of these vortices grows quickly, triggering
turbulence before they reach the downstream corner of the cylinder. Actually, they break up into
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Figure 7: Left: 2D section of the unstructured mesh used to perform the set of LESs of the turbulent
flow around a square cylinder at Re = 22000. This (z,y)-section contains 19524 nodes. Right: zoom
around the obstacle.

finer structures before being engulfed into the much larger von Karman vortices. An additional
motivation to choose this configuration is the fact that it has been studied before in many numerical
and experimental studies. The reader is referred to our DNS study [37] and references therein for
further details about the flow dynamics.

In the current work, we have carried out LES simulations on unstructured meshes using the
NOISEtte code for the simulation of compressible turbulent flows in problems of aerodynamics
and aeroacoustics. It is based on the family of high-accuracy finite-volume EBR (Edge-Based
Reconstruction) schemes for unstructured meshes [1]. The EBR schemes provide at a low computing
cost a higher accuracy than most Godunov-type second-order schemes on unstructured meshes. On
translationally-invariant (structured) meshes the EBR schemes coincide with high-order (up to sixth-
order) finite-difference schemes. Hybrid schemes with combination of upwind and central-difference
parts are used in LESs with automatic adaptation of the weights of the components in order to
preserve numerical stability at a minimal numerical dissipation.

For the simulations, the 2D unstructured mesh displayed in Figure 7 has been extruded in the
span-wise direction. The resulting meshes have 19524 x N, control volumes, where N, is the number
of control volumes in the span-wise direction. In this study we have considered three values for IV,,
i.e., N, = {50,100,1000}. The first two meshes are reasonable for an LES [17] whereas the mesh with
N, = 1000 is clearly too fine (even for a DNS [37]). The 2D base mesh (see Figure 7, left) is basically
composed of triangular elements, except for the region around the square cylinder where there are
skewed quadrilateral elements (see Figure 7, right). The dimensions of the computational domain
are slightly smaller than in the DNS study [37]: 27D x 27D x 3D in the stream-wise, cross-stream
and span-wise directions, respectively. The upstream face of the cylinder is located at 6.5D from the
inflow and centered in the cross-stream direction. The origin of coordinates is placed at the center of
the cylinder.

Similar to the turbulent channel flow, LES results have been obtained with the S3PQ model [38]
using two definitions of A: the new definition, Ay, proposed in Eq. (18) and the classical definition
proposed by Deardorff, given in Eq. (4). Results are compared with the experimental data of Lyn et
al. [15] and our incompressible DNS results [37] which are taken as a reference. This DNS was carried
out with a constant velocity profile, u = (U,0,0), at the inflow, convective boundary conditions,
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Figure 8: Average eddy-viscosity, (ve), divided by the kinematic viscosity, v. Results for a turbulent
flow around a square cylinder at Re = 22000 carried out using the S3PQ model [38] on a set of
unstructured meshes obtained from the extrusion in the span-wise direction of the 2D mesh displayed
in Figure 7. Results obtained with the new definition, A, proposed in Eq. (18) (left) are compared
with the classical definition proposed by Deardorff given in Eq. (4) (right). This is done for two meshes
differing in the number of grid points in the span-wise direction: N, = 100 (top) and N, = 1000

(bottom).
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Figure 9: The same as in Figure 8. Zoom around the obstacle. Notice that the scale range has been
properly modified.

ou/0t + Udu/ox = 0, at the outflow, Neumann boundary condition in the cross-stream direction,
Odu/oy = 0, periodic boundary conditions in the span-wise direction and a no-slip condition at the
surface of the cylinder. To make the comparison possible, present LESs are carried out with analogous
boundary conditions and at a nearly incompressible Mach number (M = 0.1). Results are presented
in dimensionless form where the reference length and velocity are the cylinder width, D, and the
inflow velocity, U, respectively.

Results for the average eddy-viscosity, (v.), divided by the kinematic viscosity, v, are displayed in
Figures 8 and 9. Results for two meshes, i.e., N, = 100 (top) and N, = 1000 (bottom), are shown. As
expected, values of v, obtained with Deardorff’s length scale are strongly affected by such abnormal
mesh anisotropies. In this regard, the ability of the new subgrid characteristic length, Ay, to adapt to
these situations is remarkable. At first sight, the results displayed in Figure 8 look almost identical for
Ajgq, whereas very significant differences are observed for the Deardorff definition. A closer inspection
(see Figure 9) reveals how both definitions of A respond to the abrupt mesh transition between the
near obstacle region and the rest of the domain (see Figure 7, right). The new subgrid characteristic
length tends to mitigate the effects of this mesh transition compared with the results obtained with
the Deardorff definition. This difference becomes more evident for the mesh with N, = 1000.

Sharp discontinuities in v, may have severe negative effects. Numerically, they can lead to more
stringent time steps and potentially cause instabilities. The former increases the computational cost of
the simulation, whereas the later can be solved using a proper discretization of the viscous term [36].
From a physical point of view, this abnormal behavior of v, can negatively effect the quality of
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Figure 10: Profiles of the average stream-wise velocity, (u), in the near-wall region. Results correspond
to a turbulent flow around a square cylinder at Re = 22000 carried out using the S3PQ model [38]
on a set of unstructured meshes obtained from the extrusion in the span-wise direction, i.e., N, =
{50, 100, 1000}, of the 2D mesh displayed in Figure 7. Solid lines correspond to the DNS results
of Trias et al. [37]. Results obtained with the novel definition Ay (top) proposed in Eq. (18) are
compared with the classical definition proposed by Deardorff (bottom) given in Eq. (4).
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Figure 11: The same as in Figure 10. In this case, profiles are in the wake region. Experimental
results of Lyn et al. [15] (solid circles) are also displayed for comparison.

the results in an uncontrolled manner. In this regard, results of the average stream-wise velocity,
(u), in the near cylinder region are displayed in Figure 10. In this case, both the influence of the
definition of A and the number of grid points in the span-wise direction, IV,, are rather small. This is
a consequence of the fact that the turbulence model itself has a relatively low impact in the near-wall
region, especially near the upstream corner. Therefore, discrepancies with the DNS results in this
region can simply be attributed to insufficient grid resolution. This region is actually characterized by
the formation of small vortices in the shear layer due to the Kelvin—Helmholtz instability that are
rapidly convected downstream. The size of these vortices grows quickly, triggering turbulence before
they reach the downstream corner of the cylinder. Interestingly, much better agreement with the DNS
results is achieved in this region. Apart from this, it is also interesting to observe that results obtained
with the new subgrid characteristic length, Ajyy, become closer to the DNS results when NV, increases.
The results obtained with the Deardorff definition display an opposite behavior. These trends remain
the same in the wake region where differences between both approaches are more visible. This is
clearly observed in the average stream-wise velocity profiles displayed in Figure 11. The anomalous
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Figure 12: The same as in Figure 10. In this case, average stream-wise velocity profiles are in the
domain centerline. Experimental results of Lyn et al. [15] are also displayed for comparison.

behavior of the Deardorff definition when refining in the span-wise direction becomes more evident
further downstream. The most relevant results in this regard are the average stream-wise velocity
profiles in the domain centerline displayed in Figure 12. Results obtained with N, = 1000 and the
Deardorff definition of A are completely different from those obtained with N, = 50 and N, = 100,
showing that the definition of A itself can have a very negative impact on the performance of an SGS
model. Such an abnormal behavior is not observed with the new subgrid characteristic length, Ajgq.

These results confirm the findings of the first two test cases (i.e., decaying isotropic turbulence
and a turbulent channel flow): compared with the Deardorff definition, Ay, the proposed definition,
Ajgq, is much more robust with respect to mesh anisotropies. For those two cases, it was also seen that
results using Ajgq are at least as good as the best results obtained with other definitions. Furthermore,
it was also observed that these trends are even more evident for turbulent statistics. Here, the results
for the stream-wise Reynolds stresses, (u/u’), in the near-wall region displayed in Figure 13 seem to
confirm this. The robustness of the new definition, Ay, in the shear layer region where there is
almost a perfect match for the three meshes is remarkable (IV, = {50,100, 1000}), while differences are
observed for the classical Deardorff definition, Ay,. The new definition, Ajgy, is even more robust if we
consider that in this shear layer region there is an abrupt mesh transition from structured hexahedral
elements to unstructured triangular prisms (see Figure 7, right).

6 Concluding remarks

In this work, a novel definition of the subgrid characteristic length, A, has been proposed with the
aim to answer the following research question: Can we find a simple and robust definition of A that
minimizes the effect of mesh anisotropies on the performance of SGS models? In this respect, due to its
simplicity and mathematical properties we consider the flow-dependent Ay given in Eq. (18) a very
good candidate. Namely, it is locally defined, frame invariant, well bounded (see properties P1 and
P2 in Section 2), and well conditioned, and it has a low computational cost (property P5). Moreover,
a simple extension of this length scale for unstructured grids (property P4) has been proposed in
Section 4: it basically consists in replacing A in Eq. (18) by the local Jacobian, J;, defined in Egs. (33)
and (32). Finally, from the definition of A it is obvious that it is dependent on the local flow topology
given by the gradient of the resolved velocity, G = V@ (property P3). In this respect, analytical
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Figure 13: Profiles of the stream-wise Reynolds stresses, (u/u’), in the near-wall region. Results
correspond to a turbulent flow around a square cylinder at Re = 22000 carried out using the S3PQ
model [38] on a set of unstructured meshes obtained from the extrusion in the span-wise direction,
i.e., N, = {50,100,1000}, of the 2D mesh displayed in Figure 7. Solid lines correspond to the DNS
results of Trias et al. [37]. Results obtained with the novel definition Ay (top) proposed in Eq. (18)
are compared with the classical definition proposed by Deardorff (bottom) given in Eq. (4).

analysis for simple flow configurations points out the adequacy of the proposed definition. Numerically,
it has been successfully tested for simulations of decaying homogeneous isotropic turbulence and a
turbulent channel flow at Re; = 395 using (artificially) refined grids. Comparisons with the classical
length scale of Deardorff have shown that the proposed definition is much more robust with respect to
mesh anisotropies. Due to these findings and its simplicity, we think the currently proposed length
scale has a great potential to be used in subgrid-scale models in complex geometries where highly
skewed (unstructured) meshes are present.
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