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Exploring nonlinear subgrid-scale models and new
characteristic length scales for large-eddy

simulation

By M. H. Silvis†, F. X. Trias‡, M. Abkar, H. J. Bae, A. Lozano-Durán
AND R. W. C. P. Verstappen†

We study subgrid-scale modeling for large-eddy simulation (LES) of anisotropic tur-
bulent flows on anisotropic grids. In particular, we show how the addition of a velocity-
gradient-based nonlinear model term to an eddy viscosity model provides a better rep-
resentation of energy transfer. This is shown to lead to improved predictions of rotating
and nonrotating homogeneous isotropic turbulence. Our research further focuses on cal-
culation of the subgrid characteristic length, a key element for any eddy viscosity model.
In the current work, we propose a new formulation of this quantity based on a Tay-
lor series expansion of the subgrid stress tensor in the computational space. Numerical
tests of decaying homogeneous isotropic turbulence and a plane-channel flow illustrate
the robustness of this flow-dependent characteristic length scale with respect to mesh
anisotropy.

1. Introduction

Most practical turbulent flows cannot be computed directly from the Navier-Stokes
equations, because not enough resolution is available to resolve all relevant scales of
motion. We therefore turn to LES to predict the large-scale behavior of incompressible
turbulent flows. In LES, the large scales of motions in a flow are explicitly computed,
whereas the effects of small-scale motions are modeled. Since the advent of computational
fluid dynamics, many subgrid-scale models have been proposed and successfully applied
to a wide range of flows, cf., for instance, Sagaut (2006).
In the current work, we focus on subgrid-scale modeling for LES of anisotropic flows

on anisotropic grids. On the one hand, we look to go beyond the purely dissipative
description of turbulent flows that is provided by eddy viscosity models. To that end,
we consider model terms that are nonlinear in the velocity gradient, which can capture
convective transport of energy among large scales of motion. This will likely lead to
an improved prediction of flows in which the subgrid-scale stress anisotropy plays an
important role, such as in rotating flows (Marstorp et al. 2009). On the other hand, we
aim to find a proper definition of the subgrid characteristic length scale that minimizes
the dependence of simulation results on grid anisotropy. This is particularly important for
simulations on highly anisotropic or stretched grids, for which the smallest grid spacing
may start dominating the characteristic length scale that is commonly used. In this work
a new flow-dependent characteristic length scale is proposed.
We explore the behavior of subgrid-scale models of eddy viscosity and nonlinear form in
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simulations of rotating homogeneous isotropic turbulence and spanwise-rotating plane-
channel flow. Furthermore, the new flow-dependent subgrid characteristic length scale
is studied in simulations of nonrotating homogeneous isotropic turbulence and plane-
channel flow. A comparison is made with other characteristic length scales.
The outline of this paper is as follows. The basic equations of LES are introduced in

Section 2, along with subgrid-scale models that are nonlinear in the velocity gradient.
A new flow-dependent subgrid characteristic length scale is also proposed. Section 3
discusses the particular numerical test cases considered in this work, as well as results
of LES and direct numerical simulations (DNS). Finally, Section 4 provides the study’s
conclusions and an outlook for future research.

2. Background

2.1. Large-eddy simulation

In LES, usually a filtering or coarse-graining operation is employed to distinguish between
large and small scales of motion in flows. This operation is denoted by an overbar in
what follows. The evolution of incompressible, rotating large-scale velocity fields can be
described by the filtered Navier-Stokes equations in a rotating frame, supplemented by
the incompressibility constraint (Sagaut 2006; Grundestam et al. 2008),

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1
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∂p̄

∂xi
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∂xj∂xj
+ 2ǫijkūjΩk − ∂
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τij ,

∂ūi

∂xi
= 0. (2.1)

Here, ūi represents the xi-component of the filtered velocity field and p̄ indicates the fil-
tered pressure. Alternatively, the coordinates may be written x, y and z. The density and
kinematic viscosity are denoted by ρ and ν, and are taken constant. The rotation vector,
appearing in the Coriolis force, is represented by Ωk. Einstein’s summation convention is
assumed for repeated indices. The turbulent, or subgrid-scale, stresses, τij = uiuj − ūiūj,
represent the interactions between large and small scales of motion. As they are not solely
expressed in terms of the filtered velocity field, they have to be modeled.

2.2. Nonlinear subgrid-scale models

We assume that the subgrid-scale stresses can be fully characterized by the local large-
scale velocity gradient,

Gij =
∂ūi

∂xj
, (2.2)

and consider subgrid-scale models of the following nonlinear form (Pope 1975; Lund &
Novikov 1992),

τmod − 1

3
tr(τmod)I = −2νeS + µe(SΩ− ΩS). (2.3)

Here, the filtered rate-of-strain and rate-of-rotation tensors are given by
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The model coefficients, νe and µe, are usually defined as a product of three factors: a
dimensionless constant; a (squared) length scale, such as the LES filter length or char-
acteristic length scale, δ; and a function with units of inverse time, that depends on the
local large-scale velocity gradient via the tensor invariants

I1 = tr(S2), I2 = tr(Ω2), I3 = tr(S3), I4 = tr(SΩ2), I5 = tr(S2Ω2). (2.5)
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The first term on the right-hand side of Eq. (2.3), the usual eddy viscosity term, is
used to parametrize dissipative processes in turbulent flows. The second term, that is
nonlinear in the velocity gradient, is added because it is perpendicular to the rate-of-
strain tensor. Therefore, it does not directly contribute to the subgrid dissipation and it
has to represent energy transport. This may be important to better capture the behavior
of scales of motion of the order of the subgrid characteristic length scale. Marstorp et al.
(2009) show that addition of a nonlinear term of the form µe(SΩ − ΩS) to an eddy
viscosity model can significantly improve prediction of the Reynolds stresses in rotating
and nonrotating turbulent channel flows. Follow-up research by Rasam et al. (2011)
and Montecchia et al. (2015) indicates that such a model also performs well at coarse
resolutions. As the nonlinear model term contains the rate-of-rotation tensor, it has “a
particular potential for [the simulation of] rotating flows” (Marstorp et al. 2009). The
particular choice of subgrid-scale models in this study is detailed in Section 3.

2.3. A new subgrid characteristic length scale

As discussed in Section 2.2, subgrid-scale models that depend on the local velocity gradi-
ent (usually) require specification of what we call the subgrid characteristic length scale,
δ. This length scale is generally associated with the local grid size. That is, for isotropic
grids, δ is assumed to be equal to the mesh size, δ = ∆x = ∆y = ∆z. However, for
anisotropic or unstructured grids, a consensus has not yet been reached.

Owing to its simplicity, the most widely used approach is that proposed by Deardorff
(1970), based on the cube root of the cell volume. For a Cartesian grid it reads

δvol = (∆x∆y∆z)1/3. (2.6)

Extensions of this approach for anisotropic grids were proposed by, for instance, Scotti
et al. (1993). Alternative definitions of δ include the maximum of the cell sizes,

δmax = max(∆x,∆y,∆z), (2.7)

which was originally proposed in the first presentation of Detached-Eddy Simulation
(DES) by Spalart et al. (1997) as a safer and robust definition of δ.

More recent definitions of δ are also found in the context of DES. For example, Chauvet
et al. (2007) introduced the concept of sensitizing the characteristic length scale to the
orientation of the vorticity vector, ωi = ǫijk∂juk,

δω =
√

(ω2
x∆y∆z + ω2

y∆x∆z + ω2
z∆x∆y)/|ω|2. (2.8)

This definition detects the alignment of the vorticity vector, ωi, whose magnitude is
written |ω| = √

ωiωi, with an axis. For example, if ωi = δi3ωz we obtain δω =
√
∆x∆y.

This approach was motivated by the fact that δmax results in an excessive generation of
eddy viscosity in the initial region of shear layers typically resolved on highly anisotropic
grids. However, like Deardorff’s length scale given in Eq. (2.6), δω may still involve the
smallest of the grid spacings. This may lead to very low values of eddy viscosity.

The concept of a flow-dependent length scale is very appealing. As flows can be charac-
terized using the resolved velocity field gradient, Eq. (2.2), it seems logical to employ this
tensor quantity to create a flow-dependent definition of δ. Both the subgrid characteristic
length, δ, and the velocity gradient tensor, G, appear in a natural way when we consider
the leading-order Taylor series expansion of the subgrid-scale stress tensor in the filter
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length, δ,

τ =
δ2

12
GGT +O(δ4). (2.9)

For anisotropic filter lengths, the Taylor expansion of the subgrid stress tensor gives

τ =
1

12
GδG

T
δ +O(δ4), (2.10)

where Gδ ≡ G∆, and the local mesh geometry for a Cartesian grid is contained in the
second-order diagonal tensor

∆ ≡ diag(∆x,∆y,∆z). (2.11)

Performing a least-squares minimization of the difference between the leading-order terms
of Eqs. (2.9)-(2.10), i.e., (δ2/12)GGT ≈ (1/12)GδG

T
δ , we obtain

δlsq =

√

GδGT
δ : GGT

GGT : GGT
. (2.12)

Here, the double dot represents the Frobenius inner product of two tensors, which is akin
to the dot product for vectors. The length scale δlsq is defined locally and is well-bounded,
δmin ≤ δlsq ≤ δmax, where δmax is given in Eq. (2.7) and δmin is defined analogously.
Moreover, it is obviously sensitive to flow orientation. In this regard, for purely rotating
flows, i.e., S = 0 and G = Ω, δlsq reduces to

δlsq =

√

ω2
x(∆y2 +∆z2) + ω2

y(∆x2 +∆z2) + ω2
z(∆x2 +∆y2)

2|ω|2 , (2.13)

which resembles the definition of δω given in Eq. (2.8). Note that, for ωi = δi3ωz, δlsq is
O(max{∆x,∆y}) instead of being equal to

√
∆x∆y. Therefore, the definition δlsq also

avoids a strong effect of the smallest grid spacing.

3. Numerical results

In the current project, we performed DNS and LES of rotating and nonrotating decay-
ing homogeneous isotropic turbulence and turbulent plane-channel flow. A detailed de-
scription of these simulations and their results is provided below. All simulations were per-
formed using incompressible Navier-Stokes solvers that employ kinetic-energy-conserving
spatial discretizations of finite-difference or finite-volume type (Verstappen & Veldman
2003).

3.1. Exploring subgrid-scale models

3.1.1. Rotating homogeneous isotropic turbulence

We first consider simulations of decaying homogeneous isotropic turbulence, set up
according to the description provided by Rozema et al. (2015). The addition of rotation
is characterized by the bulk rotation number Ro = 2ΩL/uref. Here, L represents the size
of the box of turbulence considered, Ω = Ω3 is the rotation rate about the z-axis and
uref is a reference velocity corresponding to the initial kinetic energy content of the flow.
Time is nondimensionalized according to 0.0024L/uref (Rozema et al. 2015). The direct
numerical simulations were performed on a uniform, isotropic 5123 grid, whereas a 643

grid was used for the LES. In the latter, we used a new implementation of the minimum-
dissipation model of Rozema et al. (2015), with and without the nonlinear model term
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Figure 1. Three-dimensional kinetic energy spectra as a function of computational wavenumber
at nondimensional time t = 171 for (a) Ro = 0 and (b) Ro = 100, and decay of the normalized
total resolved kinetic energy for (c) Ro = 0 and (d) Ro = 100. Results were obtained from
a direct numerical simulation and from LES without a model, with the minimum-dissipation
model (with and without addition of a nonlinear term) and with the dynamic Smagorinsky
model. The dashed vertical line in the top figures represents the grid point-to-point oscillation.

of Eq. (2.3). In this preliminary study, the coefficient of the nonlinear model is taken
independent of the flow field, µe = Cµδ

2, where Cµ is a constant and the characteristic
length scale is straightforwardly defined as δ = ∆x = ∆y = ∆z. Also the dynamic
Smagorinsky model (Germano et al. 1991) was used.
Figure 1 shows three-dimensional kinetic energy spectra and the decay of the normal-

ized total resolved kinetic energy for rotation numbers Ro = 0 (no rotation) and Ro = 100
(significant rotation). As expected, the Coriolis force makes the transport of energy to
larger scales of motion grow. As a consequence, the dissipation rate of kinetic energy
decreases. Without rotation (Ro = 0), the minimum-dissipation model overpredicts the
large-scale and underpredicts the small-scale kinetic energy. Addition of the nonlinear
term (Cµ = −0.09) can correct for this by increasing the forward scatter of energy. For
the case with rotation (Ro = 100), the minimum-dissipation model underpredicts the
kinetic energy for both large and intermediate length scales. The nonlinear model term
can also transport energy to larger scales (backscatter). Although this effect is small for
the higher rotation numbers, it occurs for 0 ≤ Cµ ≤ 0.5 and Ro < 100 (not shown). The
nonlinear term does not have a large effect on the total resolved kinetic energy, confirm-
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Figure 2. Mean velocity profile (a) and deviatoric diagonal Reynolds stresses in the streamwise
(b), wall-normal (c) and spanwise (d) directions at rotation number Ro+ = 22 and Reτ = 180.
Results were obtained from a direct numerical simulation and from LES without a model, with
the minimum-dissipation model and with the dynamic Smagorinsky model.

ing that it describes energy transfer rather than dissipation. The dynamic Smagorinsky
model appears to consistently overpredict the large-scale kinetic energy content. Without
rotation (Ro = 0), the predicted small-scale kinetic energy is too small with respect to
the direct numerical simulation. This can be understood from the use of explicit filtering
in determining the model constant, which damps motions close to the cutoff (Rozema
et al. 2015). For the case with rotation (Ro = 100), however, the dynamic Smagorinsky
model predicts the small-scale kinetic energy content accurately, perhaps because the
flow is essentially becoming two-dimensional under rotation.

3.1.2. Rotating plane-channel flow

We also performed simulations of spanwise-rotating plane-channel flow. These sim-
ulations were set up according to the work of Grundestam et al. (2008) and can be
characterized by the friction Reynolds number Reτ = uτd/ν (where uτ is the friction
velocity derived from the wall shear stress and d is the channel half-width) and the ro-
tation number Ro+ = 2Ωd/uτ (where Ω = Ω3 represents the rotation rate about the
spanwise axis). The flow domain was taken to be of size 4πd×2d×2πd for simulations at
Reτ = 180. Direct numerical and LES were, respectively, performed on 256× 192× 192
and 64 × 32 × 64 grids that were stretched in the wall-normal directions, but were uni-
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form in wall-parallel planes. We considered the effects of the minimum-dissipation and
dynamic Smagorinsky models. Study of the addition of nonlinear model terms will be
deferred to future work, because we first need to investigate the effects of different length
scale definitions on stretched grids (refer to Section 3.2).
Figure 2 shows simulation results for the mean velocity profile and deviatoric diagonal

parts of the Reynolds stresses, Rij = 〈uiuj〉 − 〈ui〉〈uj〉, where 〈·〉 represents a time
average. We compare the deviatoric Reynolds stresses, because the subgrid-scale models
we consider are traceless, i.e., they do not include a model for the subgrid-scale kinetic
energy. Although Reτ is relatively small (i.e., 180), results obtained from direct numerical
simulations and LES without a model are quite distinct. This indicates that subgrid-scale
modeling is indeed necessary at the current resolution.
Figure 2(a) shows that all simulation results predict well the typical slope of Ro+ that

is due to laminarization of the flow on the stable side (y/d = 2) of the rotating channel.
Only the minimum-dissipation model provides a good prediction of the location of the
peak of the mean velocity profile. The dynamic Smagorinsky model seems to follow closely
the no-model mean velocity profile, also reflected in the streamwise Reynolds stresses.
The Reynolds stress profiles show that results obtained using the minimum-dissipation
and dynamic Smagorinsky models qualitatively follow the DNS results, but quantitative
improvements are clearly necessary. Note, however, that the average contribution of the
model to the Reynolds stresses was not taken into account. Once we compensate for this,
it might be possible to obtain an improved match between LES and direct numerical
simulation results (Winckelmans et al. 2002).

3.2. Exploring subgrid characteristic length scales

3.2.1. Homogeneous isotropic turbulence

The numerical simulation of decaying isotropic turbulence was chosen as a first case to
test the novel length scale, δlsq, proposed in Eq. (2.12). The configuration corresponds to
the classical experiment of Comte-Bellot & Corrsin (1971). Large-eddy simulation results
have been obtained using the Smagorinsky model, for a set of (artificially) stretched
meshes, namely 32× 32×Nz, where Nz = {32, 64, 128, 256, 512, 1024, 2048}. Results are
displayed in Figure 3. As expected, for increasing values of Nz the results obtained using
the classical definition of Deardorff, given in Eq. (2.6), diverge. This is because the value
of δ tends to vanish and, therefore, the subgrid-scale models switch off. Such is not the
case for the definition of δ proposed in this work. On the contrary, the results rapidly
converge for increasing values of Nz. Therefore, the newly proposed length scale, δlsq,
seems to minimize the effect of mesh anisotropies on the performance of subgrid-scale
models.

3.2.2. Plane-channel flow

To test the performance of the proposed definition of δlsq in the presence of walls,
simulations of a turbulent channel flow have also been considered. In this case, the code
is based on a fourth-order symmetry-preserving finite volume discretization (Verstappen
& Veldman 2003) of the incompressible Navier-Stokes equations on structured staggered
grids. For the spatial discretization of the eddy viscosity models, the novel approach
proposed by Trias et al. (2013) has been used in conjunction with the S3PQ model (Trias
et al. 2015). Results obtained for a set of (artificially) stretched grids are displayed in
Figure 4. The starting point corresponds to a 323 mesh which suffices to obtain a good
agreement with the DNS data (Trias et al. 2015). Two additional meshes (with Nz = 128
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Figure 3. Three-dimensional kinetic energy spectra as a function of computational wavenumber,
for decaying isotropic turbulence corresponding to the experiment of Comte-Bellot & Corrsin
(1971). Large-eddy simulation results have been obtained with a set of anisotropic meshes using
the Smagorinsky model. Results obtained with the novel length scale, δlsq, proposed in Eq. (2.12)
(top) are compared with the classical definition of Eq. (2.6) proposed by Deardorff (bottom).
For clarity, the latter results are shifted one decade down.
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Figure 4. Results for a turbulent channel flow at Reτ = 395 obtained with a set of anisotropic
meshes using the S3PQ model (Trias et al. 2015). Solid lines corresponds to the direct numerical
simulation of Moser et al. (1999). Results obtained with the novel length scale, δlsq, proposed in
Eq. (2.12) are compared with the classical definition proposed by Deardorff given in Eq. (2.6). For
clarity, the former results are shifted upward. (a) Mean streamwise velocity, 〈u〉; (b) turbulent
kinetic energy, k.

and Nz = 512) have been employed to investigate the effect of δ. Refinement in the
spanwise direction was chosen because this was expected to have a smaller influence on
numerical results than refinement in, for example, the wall-normal direction. As such,
differences in numerical results can be attributed to a different choice of length scale.
Again, the results obtained with the new definition of δ are much more robust to

mesh anisotropies. No changes are observed in the mean velocity profile when the newly
proposed length scale is employed, whereas significant changes are observed for Dear-
dorff’s classical definition. Similar behavior is observed for the turbulent kinetic energy,
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especially in the bulk region, where results obtained with the new definition are almost
independent of the value of Nz.

4. Conclusions

We studied subgrid-scale modeling for LES of anisotropic turbulent flows on anisotropic
grids. We aimed to go beyond the purely dissipative description of turbulent flows that
is provided by eddy viscosity models. We therefore explored adding a nonlinear model
term to the minimum-dissipation eddy viscosity model of Rozema et al. (2015). DNS
and LES of rotating homogeneous isotropic turbulence showed that this nonlinear model
term (with constant coefficient) can lead to enhanced forward scatter of energy. It was
also shown that the nonlinear term can capture transfer of energy from small to large
scales of motion (backscatter), confirming the potential of such a term to describe energy
transport in turbulent flows. The nonlinear model term can, to a certain extent, correct
the prediction of kinetic energy spectra obtained using the minimum-dissipation model.
The dynamic Smagorinksy model, used as reference, appeared to overpredict the kinetic
energy of large-scale motions in nonrotating and rotating homogeneous isotropic turbu-
lence. While underpredicting the small-scale kinetic energy in the nonrotating case, the
dynamic Smagorinksy model predicted this quantity well in homogeneous isotropic tur-
bulence with rotation. Simulations of spanwise-rotating plane-channel flow also showed
that, despite the low Reynolds number of Reτ = 180, DNS and LES without a model
are clearly distinguishable. This underlines the need for subgrid-scale modeling in such
flows. Although the mean velocity profile and Reynolds stresses obtained from LES using
the minimum-dissipation model and the dynamic Smagorinsky model showed qualitative
agreement with results from direct numerical simulations, quantitative improvements are
necessary, particularly, for the Reynolds stresses. Rotating flows thus constitute a chal-
lenging test case for LES. The effects of nonlinear models in these test cases will be
studied further in the future.
Furthermore, we searched for a robust definition of the subgrid characteristic length

scale that minimizes the dependence of LES results on grid anisotropy. To that end, a
new flow-dependent subgrid characteristic length scale was proposed in Eq. (2.12). In
this work, this length scale has been successfully tested for simulations of decaying ho-
mogeneous isotropic turbulence and plane-channel flow at Reτ = 395 using (artificially)
refined grids. Comparisons with the classical length scale of Deardorff have shown that
the proposed definition is much more robust with respect to mesh anisotropies. In ad-
dition, it is very easy to implement. Therefore, the currently proposed length scale has
great potential to be used in LES of flows in complex geometries where highly skewed
(unstructured) meshes may be present.
As such, we have obtained promising results for the modeling of transport processes in

anisotropic flows and for performing LES on anisotropic grids, and we hope to combine
these features in future studies.
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